Observation of Two Dimensional Metallic Surface States and Metal to Semiconductor Transition on Low Dimensional Polar Thin Films

2018 ◽  
Vol 18 (6) ◽  
pp. 658-662 ◽  
Author(s):  
Ji Seop Oh ◽  
Minu Kim ◽  
Gideok Kim ◽  
Han Gyeol Lee ◽  
Hyang Keun Yoo ◽  
...  

2014 ◽  
Vol 213 ◽  
pp. 65-70
Author(s):  
Maria V. Ryzhkova ◽  
Dimitry V. Gruznev ◽  
Elena A. Borisenko ◽  
Dmitry A. Tsukanov

Changes in electrical conductance of the Bi/Si (111) reconstructed surfaces and Bi {012} or Bi (001) ultra-thin films have been studied after sodium deposition at room temperature. It was observed that deposition of sodium onto Si (111)-β-3×3-Bi surface results in increasing of surface conductivity up to 0.3 monolayers (ML) of adsorbed sodium atoms. These conductance changes were explained by developing of the metallic surface states in the band gap as revealed by angle resolved photoemission spectroscopy spectra. Moreover, it was shown that sodium adsorption onto Bi {012} and Bi (001) thin films leads to drastic changes in its surface conductivity including a peak of maximum electrical conductance at 0.5 monolayers of adsorbed sodium.


ACS Nano ◽  
2014 ◽  
Vol 8 (7) ◽  
pp. 7506-7512 ◽  
Author(s):  
Wei Ning ◽  
Fengyu Kong ◽  
Chuanying Xi ◽  
David Graf ◽  
Haifeng Du ◽  
...  

Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 87-95
Author(s):  
M. S. Baranava ◽  
P. A. Praskurava

The search for fundamental physical laws which lead to stable high-temperature ferromagnetism is an urgent task. In addition to the already synthesized two-dimensional materials, there remains a wide list of possible structures, the stability of which is predicted theoretically. The article suggests the results of studying the electronic properties of MAX3 (M = Cr, Fe, A = Ge, Si, X = S, Se, Te) transition metals based compounds with nanostructured magnetism. The research was carried out using quantum mechanical simulation in specialized VASP software and calculations within the Heisenberg model. The ground magnetic states of twodimensional MAX3 and the corresponding energy band structures are determined. We found that among the systems under study, CrGeTe3 is a semiconductor nanosized ferromagnet. In addition, one is a semiconductor with a bandgap of 0.35 eV. Other materials are antiferromagnetic. The magnetic moment in MAX3 is localized on the transition metal atoms: in particular, the main one on the d-orbital of the transition metal atom (and only a small part on the p-orbital of the chalcogen). For CrGeTe3, the exchange interaction integral is calculated. The mechanisms of the formation of magnetic order was established. According to the obtained exchange interaction integrals, a strong ferromagnetic order is formed in the semiconductor plane. The distribution of the projection density of electronic states indicates hybridization between the d-orbital of the transition metal atom and the p-orbital of the chalcogen. The study revealed that the exchange interaction by the mechanism of superexchange is more probabilistic.


2021 ◽  
pp. 2100193
Author(s):  
Peng Liu ◽  
Bingqian Zhang ◽  
Qing Liao ◽  
Guifen Tian ◽  
Chunling Gu ◽  
...  

Author(s):  
Manik Goyal ◽  
Honggyu Kim ◽  
Timo Schumann ◽  
Luca Galletti ◽  
Anton A. Burkov ◽  
...  

2021 ◽  
Author(s):  
Arindam Mondal ◽  
Akash Lata ◽  
Aarya Prabhakaran ◽  
Satyajit Gupta

Application of three-dimensional (3D)-halide perovskites (HaP) in photocatalysis encourages the new exercise with two-dimensional (2D) HaP based thin-films for photocatalytic degradation of dye. The reduced dimensionality to 2D-HaPs, with a...


Author(s):  
Chong Liu ◽  
Chao-Sheng Lian ◽  
Meng-Han Liao ◽  
Yang Wang ◽  
Yong Zhong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document