A Non-Linear Multi-Phase Field Model for Li Plating and Dendrite Growth at Li Metal Anode Incorporating Solid Electrolyte Interphase (SEI) Layer

2016 ◽  
Vol 163 (3) ◽  
pp. A592-A598 ◽  
Author(s):  
Z. Liu ◽  
Y. Qi ◽  
Y. X. Lin ◽  
L. Chen ◽  
P. Lu ◽  
...  

2015 ◽  
Vol 1753 ◽  
Author(s):  
Pengjian Guan ◽  
Lin Liu

ABSTRACTSolid electrolyte interface (SEI) layer plays a key role in lithium-ion batteries’ degradation research. However, SEI layer microstructure prediction still needs further investigation, especially the lithium-ion diffusion in SEI layer considering its morphology evolution during the growth of SEI. Due to the unique advantage of avoiding explicitly tracking the interfaces with sharp composition gradients, a phase field model is developed to simulate the SEI formation and its morphology evolution that is regarded as a solidification process. Fick’s law and mass balance are applied to investigate lithium-ion concentration distribution and diffusion coefficients of different SEI layers (i.e., compact and porous SEI layers) predicted by the developed phase field model. The simulation results show lithium-ion diffusion coefficients between 298K and 318K are 1.34-1.87(10-16) m2/s and 1.73-2.18(10-12) m2/s for compact SEI and porous SEI layer, respectively. The developed model has great potential to be extended to three dimensional spaces for SEI layer spatial growth investigation and other interfaces with complex morphology evolution.


2009 ◽  
Vol 58 (1) ◽  
pp. 650
Author(s):  
Yang Yu-Juan ◽  
Wang Jin-Cheng ◽  
Zhang Yu-Xiang ◽  
Zhu Yao-Chan ◽  
Yang Gen-Cang

2019 ◽  
Vol 166 (10) ◽  
pp. D389-D394 ◽  
Author(s):  
Keliang Wang ◽  
Yu Xiao ◽  
Pucheng Pei ◽  
Xiaotian Liu ◽  
Yichun Wang

Sign in / Sign up

Export Citation Format

Share Document