Mutifunctional Epoxy-Based Solid Polymer Electrolytes for Energy Storage Systems

2020 ◽  
Vol 31 ◽  
pp. 588-591
Author(s):  
A.K. Kenessova ◽  
G.A. Seilkhanova ◽  
T.S. Kurmanbayeva ◽  
E.Zh. Ussipbekova ◽  
A.P. Kurbatov

2021 ◽  
Author(s):  
João Barbosa ◽  
Renato Ferreira Gonçalves ◽  
Carlos M. Costa ◽  
Veronica de Zea Bermudez ◽  
Arkaitz Fidalgo ◽  
...  

The efforts to decarbonize the economies, with particular focus on renewable energies, must be accompanied by the development of more efficient and environmentally friendlier energy storage systems. In this context,...


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2257 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Iver Brevik ◽  
Muhamad H. Hamsan ◽  
M. A. Brza ◽  
Muaffaq M. Nofal ◽  
...  

Compatible green polymer electrolytes based on methyl cellulose (MC) were prepared for energy storage electrochemical double-layer capacitor (EDLC) application. X-ray diffraction (XRD) was conducted for structural investigation. The reduction in the intensity of crystalline peaks of MC upon the addition of sodium iodide (NaI) salt discloses the growth of the amorphous area in solid polymer electrolytes (SPEs). Impedance plots show that the uppermost conducting electrolyte had a smaller bulk resistance. The highest attained direct current DC conductivity was 3.01 × 10−3 S/cm for the sample integrated with 50 wt.% of NaI. The dielectric analysis suggests that samples in this study showed non-Debye behavior. The electron transference number was found to be lower than the ion transference number, thus it can be concluded that ions are the primary charge carriers in the MC–NaI system. The addition of a relatively high concentration of salt into the MC matrix changed the ion transfer number from 0.75 to 0.93. From linear sweep voltammetry (LSV), the green polymer electrolyte in this work was actually stable up to 1.7 V. The consequence of the cyclic voltammetry (CV) plot suggests that the nature of charge storage at the electrode–electrolyte interfaces is a non-Faradaic process and specific capacitance is subjective by scan rates. The relatively high capacitance of 94.7 F/g at a sweep rate of 10 mV/s was achieved for EDLC assembly containing a MC–NaI system.


2021 ◽  
Author(s):  
Chandni Devi ◽  
Jnaneswari Gellanki ◽  
Håkan Pettersson ◽  
Sandeep Kumar

Abstract Solid-state sodium ion batteries are frequently referred to as the most promising technology for future energy storage applications. However, developing a solid electrolyte with high ionic conductivity and a wide electrochemical stability window, remains a major challenge. Although solid-polymer electrolytes have attracted great interest due to their low cost, low density and very good processability, they generally have significantly lower ionic conductivity and poor mechanical strength. Here, we report on the development of a low-cost solid polymer electrolyte comprised of poly(ethylene oxide), poly(vinylpyrrolidone) and sodium hexafluorophosphate, mixed with indium arsenide nanowires. We show that the addition of 1.0 percent by weight of nanowires increases the sodium ion conductivity in the polymer to 1.50 × 10-4 Scm−1 at 40° C. This is the highest reported conductivity for any solid polymer electrolyte to date. In order to explain this remarkable characteristic, we propose a new transport model where sodium ions hop between close-spaced defect sites present on the surface of the nanowires, forming an effective complex conductive percolation network. Our work represents a significant advance in the development of novel solid polymer electrolytes with embedded ultrafast 1D percolation networks for next generations of low-cost, high-performance batteries with excellent energy storage capabilities.


2014 ◽  
Vol 807 ◽  
pp. 41-63 ◽  
Author(s):  
K. Karuppasamy ◽  
R. Antony ◽  
S. Alwin ◽  
S. Balakumar ◽  
X. Sahaya Shajan

Nanocomposite polymer electrolytes (NCPEs) have been playing a considerable role in the development of alternative clean and sustainable energy technologies. This review article summarizes the recent research progress on the synthesis and characterization of NCPEs and its application in lithium ion battery based energy storage devices. First, an introduction on the properties, synthesis strategies and use of NCPEs is briefly given, followed by a state-of-the-art review on the preparation of NCPEs and their electrochemical properties in lithium ion battery (LIB) applications. Finally, the prospects and future challenges of NCPEs for energy storage are discussed


Sign in / Sign up

Export Citation Format

Share Document