scholarly journals Optimization, Modelling and Analysis of Air-Cooled Battery Thermal Management System for Electric Vehicles

2022 ◽  
Author(s):  
Muhammad Muddasar

Electric Vehicles (EVs) are the need of the hour due to growing climate change problems linked with the transportation sector. Battery Thermal Management System (BTMS), which is accountable for certifying safety and performance of lithium-ion batteries (LiB), is the most vital part of an EV. LiB has auspicious gravimetric energy density but the heat generation due to chemical reactions inside a LiB during charging and discharging causes temperature rise which has a direct effect on LiB performance and safety. This study specifically focuses on aircooled BTMS, defines different types of air-cooled BTMS (active and Passive), discusses limitations associated with air-cooled BTMS, and investigates different optimization techniques and parameters to improve performance of air-cooled BTMS. Maintaining temperature within optimum range and uniform temperature distribution between cells of a battery pack are the major design parameters for improving the performance and efficiency of air-cooled BTMS. Various optimization techniques including cell arrangement with a battery pack, air-flow channel optimization, and air inlet/outlet position variations are discussed and each technique is thoroughly reviewed. Finally, it’s noted that passive air-cooled BTMS is not that effective for long-distance vehicles so most researchers shifted their focus toward active air-cooled BTMS. Active air-cooled BTMS requires a lot of power for effective performance. Lastly, the most recent field of air-cooled BTMS technology which is Air-Hybrid BTMS is discussed and declared a very promising solution for overcoming major limitations associated with air-cooled BTMS.

Author(s):  
Muhammad Muddasar

Electric Vehicles (EVs) are the need of the hour due to growing climate change problems linked with the transportation sector. Battery Thermal Management System (BTMS), which is accountable for certifying safety and performance of lithium-ion batteries (LiB), is the most vital part of an EV. LiB has auspicious gravimetric energy density but the heat generation due to chemical reactions inside a LiB during charging and discharging causes temperature rise which has a direct effect on LiB performance and safety. This study specifically focuses on aircooled BTMS, defines different types of air-cooled BTMS (active and Passive), discusses limitations associated with air-cooled BTMS, and investigates different optimization techniques and parameters to improve performance of air-cooled BTMS. Maintaining temperature within optimum range and uniform temperature distribution between cells of a battery pack are the major design parameters for improving the performance and efficiency of air-cooled BTMS. Various optimization techniques including cell arrangement with a battery pack, air-flow channel optimization, and air inlet/outlet position variations are discussed and each technique is thoroughly reviewed. Finally, it’s noted that passive air-cooled BTMS is not that effective for long-distance vehicles so most researchers shifted their focus toward active air-cooled BTMS. Active air-cooled BTMS requires a lot of power for effective performance. Lastly, the most recent field of air-cooled BTMS technology which is Air-Hybrid BTMS is discussed and declared a very promising solution for overcoming major limitations associated with air-cooled BTMS.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5711
Author(s):  
Waseem Raza ◽  
Gwang Soo Ko ◽  
Youn Cheol Park

The life and efficiency of electric vehicle batteries are susceptible to temperature. The impact of cold climate dramatically decreases battery life, while at the same time increasing internal impedance. Thus, a battery thermal management system (BTMS) is vital to heat and maintain temperature range if the electric vehicle’s batteries are operating in a cold climate. This paper presents an induction heater-based battery thermal management system that aims to ensure thermal safety and prolong the life cycle of Lithium-ion batteries (Li-Bs). This study used a standard simulation tool known as GT-Suite to simulate the behavior of the proposed BTMS. For the heat transfer, an indirect liquid heating method with variations in flow rate was considered between Lithium-ion batteries. The battery and cabin heating rate was analyzed using the induction heater powers of 2, 4, and 6 kW at ambient temperatures of −20, −10, and 0 °C. A water and ethylene glycol mixture with a ratio of 50:50 was considered as an operating fluid. The findings reveal that the thermal performance of the proposed system is generally increased by increasing the flow rate and affected by the induction heater capacity. It is evident that at −20 °C with 27 LPM and 6 kW heater capacity, the maximum heat transfer rate is 0.0661 °C/s, whereas the lowest is 0.0295 °C/s with 2 kW heater capacity. Furthermore, the proposed BTMS could be a practical approach and help to design the thermal system for electric vehicles in the future.


Sign in / Sign up

Export Citation Format

Share Document