LABORATORY DEMONSTRATION OF BAROREFLEX CONTROL OF HEART RATE IN CONSCIOUS RATS

2002 ◽  
Vol 26 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Theresa L. O’Donaughy ◽  
Thomas C. Resta ◽  
Benjimen R. Walker

We have developed a laboratory exercise that demonstrates arterial baroreflex control of heart rate (HR) in the conscious unrestrained rat, incorporating graduate level physiological topics as well as a hands-on exposure to conscious animal research. This demonstration utilizes rats chronically instrumented to measure cardiac output (CO), HR, and arterial blood pressure in response to agents that raise or lower blood pressure. The HR response to progressive increases or decreases in blood pressure is recorded, and a baroreflex curve is generated by plotting mean arterial blood pressure (MABP) vs. HR. Observation of altered CO allows for discussion of the relationship between MAP, CO, HR, stroke volume, and total peripheral resistance. Administration of arginine vasopressin demonstrates the ability of this hormone to alter the sensitivity of the baroreflex. Throughout the demonstration, students answer questions from a handout about general cardiovascular physiology, specific pathways of agonists, and the baroreflex system, encouraging group and individual critical analysis of the results. Interpretation of the data reemphasizes lecture material and allows students to observe the baroreflex response in a physiological setting.

2002 ◽  
Vol 283 (5) ◽  
pp. R1221-R1226 ◽  
Author(s):  
Jian Cui ◽  
Thad E. Wilson ◽  
Craig G. Crandall

To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by ∼0.5°C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P < 0.005) but did not change mean arterial blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [ΔMAP 8.4 ± 1.2 mmHg; ΔTPR 0.96 ± 0.85 peripheral resistance units (PRU)] compared with normothermia (ΔMAP 15.4 ± 1.4 mmHg, ΔTPR 7.13 ± 1.18 PRU; all P < 0.001). The sensitivity of baroreflex control of MSNA and heart rate, expressed as the slope of the relationship between MSNA and diastolic blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.


1991 ◽  
Vol 260 (1) ◽  
pp. H254-H259
Author(s):  
R. Maass-Moreno ◽  
C. F. Rothe

We tested the hypothesis that the blood volumes of the spleen and liver of cats are reflexly controlled by the carotid sinus (CS) baroreceptors. In pentobarbital-anesthetized cats the CS area was isolated and perfused so that intracarotid pressure (Pcs) could be controlled while maintaining a normal brain blood perfusion. The volume changes of the liver and spleen were estimated by measuring their thickness using ultrasonic techniques. Cardiac output, systemic arterial blood pressure (Psa), central venous pressure, central blood volume, total peripheral resistance, and heart rate were also measured. In vagotomized cats, increasing Pcs by 100 mmHg caused a significant reduction in Psa (-67.8%), cardiac output (-26.6%), total peripheral resistance (-49.5%), and heart rate (-15%) and significantly increased spleen volume (9.7%, corresponding to a 2.1 +/- 0.5 mm increase in thickness). The liver volume decreased, but only by 1.6% (0.6 +/- 0.2 mm decrease in thickness), a change opposite that observed in the spleen. The changes in cardiovascular variables and in spleen volume suggest that the animals had functioning reflexes. These results indicate that in pentobarbital-anesthetized cats the carotid baroreceptors affect the volume of the spleen but not the liver and suggest that, although the spleen has an active role in the control of arterial blood pressure in the cat, the liver does not.


2007 ◽  
Vol 103 (4) ◽  
pp. 1284-1289 ◽  
Author(s):  
Jian Cui ◽  
Sylvain Durand ◽  
Craig G. Crandall

Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 ± 0.2 to 29.8 ± 0.6°C; P < 0.001) and increased mean arterial blood pressure (85 ± 2 to 93 ± 3 mmHg; P < 0.001) without changing MSNA ( P = 0.47) or heart rate ( P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (−3.54 ± 0.29 units·beat−1·mmHg−1) was not significantly different from normothermic conditions (−2.94 ± 0.21 units·beat−1·mmHg−1; P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the “operating point” of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.


1984 ◽  
Vol 247 (2) ◽  
pp. R237-R245
Author(s):  
M. J. Holmberg ◽  
A. J. Gorman ◽  
K. G. Cornish ◽  
I. H. Zucker

In the present study, the reflex effects of low-dose (12.5-50 ng X kg-1 X min-1) intracoronary epinephrine infusion on the arterial baroreflex control of heart rate were studied. Mean arterial blood pressure-heart rate curves were constructed by changing mean arterial blood pressure with graded occlusions of the descending aorta and inferior vena cava. Intracoronary epinephrine increased left ventricular dP/dtmax by an average of 309 +/- 67.0 mmHg/s but did not alter resting mean arterial blood pressure or heart rate. Peak sensitivity, the maximum absolute slope along the mean arterial blood pressure-heart rate curve, and heart rate range were 32.7 +/- 3.2 and 26.7 +/- 2.5% less during intracoronary epinephrine compared with control, respectively. Intracoronary epinephrine did not alter the median, threshold, or saturation pressure of the mean arterial blood pressure-heart rate curve. Lidocaine block of the pericoronary nerves, which blocked the ventricular afferent pathway, eliminated the effects of intracoronary epinephrine on the arterial baroreflex. Atropine abolished the effects of intracoronary epinephrine on arterial baroreflex control of heart rate. We conclude that intracoronary epinephrine reflexly attenuates the arterial baroreflex control of heart rate in the conscious dog through activation of ventricular receptors. This response is mediated by cardiac parasympathetic efferents common to both reflex arcs.


1972 ◽  
Vol 36 (6) ◽  
pp. 721-727 ◽  
Author(s):  
Norberto C. Gonzalez ◽  
John Overman ◽  
John A. Maxwell

✓ Anesthetized dogs were subjected to elevated intracranial pressure (ICP) of 60 and 100 mm Hg. At 60 mm Hg, decreases in heart rate and arterial blood pressure were observed associated with an increase in femoral blood flow that suggested vasodilation in the somatic areas. Cardiac output showed little change. Subsequent elevation of ICP to 100 mm Hg was followed by an increase in arterial blood pressure; cardiac output increased, and femoral flow increased still further. Since resistance to flow did not change, the hypertension was thought to be due to an increase in flow rather than peripheral resistance. An increase in heart rate was associated with the elevation in cardiac output; the fact that femoral blood flow increased proportionately more than cardiac output suggested a redistribution of blood flow. The changes in peripheral blood flow and in cardiac output were associated with a decrease in the arteriovenous oxygen (A–VO2) difference. No signs of tissue hypoxia were observed; specifically there was no significant change in the lactate-to-pyruvate ratio; the changes in A–VO2 difference were correlated with changes in flow and the product of the two variables, namely, oxygen consumption, remained unchanged. The data show that experimental elevation of ICP restricted to moderate levels is followed by hemodynamic changes suggesting peripheral vasodilation, and that when an increase in blood pressure then occurs, it is due to an increase in blood flow despite the decrease in peripheral resistance.


2014 ◽  
Vol 63 (6) ◽  
pp. 435-438 ◽  
Author(s):  
Kunihiko Tanaka ◽  
Shiori Tokumiya ◽  
Yumiko Ishihara ◽  
Yumiko Kohira ◽  
Tetsuro Katafuchi

1993 ◽  
Vol 265 (5) ◽  
pp. R1132-R1140 ◽  
Author(s):  
N. B. Olivier ◽  
R. B. Stephenson

Open-loop baroreflex responses were evaluated in eight conscious dogs before and during congestive heart failure to determine the effects of failure on baroreflex control of blood pressure, heart rate, cardiac output, and total peripheral resistance. Heart failure was induced by rapid ventricular pacing. Baroreflex function was determined by calculation of the range and gain of the open-loop stimulus-response relationships for the effect of carotid sinus pressure on blood pressure, heart rate, cardiac output, and total peripheral resistance. The range and gain of blood pressure responses were substantially reduced as early as 3 days after induction of heart failure (161 +/- 6 to 99 +/- 8 mmHg and -2.7 +/- 0.3 to -1.5 +/- 0.1, respectively) and remained depressed for the 21 days of heart failure. This depression in baroreflex control of blood pressure was associated with similar depressions in reflex range and gain for heart rate (125 +/- 9 to 78 +/- 11 beats/min and -2.05 +/- 0.2 to -1.16 +/- 0.2 beats/min, respectively) and cardiac output (1.74 +/- 0.2 to 0.46 +/- 0.2 l/min and -0.81 +/- 0.02 to -0.027 +/- 0.008 l/min, respectively). The group-averaged range and gain for reflex control of vascular resistance were not altered by heart failure. In three dogs, discontinuation of rapid ventricular pacing led to resolution of heart failure within 7 days and partial restoration of the range and gain of reflex control of blood pressure. We conclude that heart failure reversibly depresses baroreflex control of blood pressure principally through a concurrent reduction in reflex control of cardiac output, whereas reflex control of vascular resistance is not consistently affected.


1991 ◽  
Vol 81 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Marohito Murakami ◽  
Hiromichi Suzuki ◽  
Atsuhiro Ichihara ◽  
Mareo Naitoh ◽  
Hidetomo Nakamoto ◽  
...  

1. The effects of l-arginine on systemic and renal haemodynamics were investigated in conscious dogs. l-Arginine was administered intravenously at doses of 15 and 75 μmol min−1 kg−1 for 20 min. 2. Mean arterial blood pressure, heart rate and cardiac output were not changed significantly by l-arginine infusion. However, l-arginine infusion induced a significant elevation of renal blood flow from 50 ± 3 to 94 ± 12 ml/min (means ± sem, P < 0.01). 3. Simultaneous infusion of NG-monomethyl-l-arginine (0.5 μmol min−1 kg−1) significantly inhibited the increase in renal blood flow produced by l-arginine (15 μmol min−1 kg−1) without significant changes in mean arterial blood pressure or heart rate. 4. Pretreatment with atropine completely inhibited the l-arginine-induced increase in renal blood flow, whereas pretreatment with indomethacin attenuated it (63 ± 4 versus 82 ± 10 ml/min, P < 0.05). 5. A continuous infusion of l-arginine increased renal blood flow in the intact kidney (55 ± 3 versus 85 ± 9 ml/min, P < 0.05), but not in the contralateral denervated kidney (58 ± 3 versus 56 ± 4 ml/min, P > 0.05). 6. These results suggest that intravenously administered l-arginine produces an elevation of renal blood flow, which may be mediated by facilitation of endogenous acetylcholine-induced release of endothelium-derived relaxing factor and vasodilatory prostaglandins.


Sign in / Sign up

Export Citation Format

Share Document