scholarly journals A novel in vitro model system for smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells

2013 ◽  
Vol 304 (4) ◽  
pp. C289-C298 ◽  
Author(s):  
Xia Guo ◽  
Steven L. Stice ◽  
Nolan L. Boyd ◽  
Shi-You Chen

The objective of this study was to develop a novel in vitro model for smooth muscle cell (SMC) differentiation from human embryonic stem cell-derived mesenchymal cells (hES-MCs). We found that hES-MCs were differentiated to SMCs by transforming growth factor-β (TGF-β) in a dose- and time-dependent manner as demonstrated by the expression of SMC-specific genes smooth muscle α-actin, calponin, and smooth muscle myosin heavy chain. Under normal growth conditions, however, the differentiation capacity of hES-MCs was very limited. hES-MC-derived SMCs had an elongated and spindle-shaped morphology and contracted in response to the induction of carbachol and KCl. KCl-induced calcium transient was also evident in these cells. Compared with the parental cells, TGF-β-treated hES-MCs sustained the endothelial tube formation for a longer time due to the sustained SMC phenotype. Mechanistically, TGF-β-induced differentiation was both Smad- and serum response factor/myocardin dependent. TGF-β regulated myocardin expression via multiple signaling pathways including Smad2/3, p38 MAPK, and PI3K. Importantly, we found that a low level of myocardin was present in mesoderm prior to SMC lineage determination, and a high level of myocardin was not induced until the differentiation process was initiated. Taken together, our study characterized a novel SMC differentiation model that can be used for studying human SMC differentiation from mesoderm during vascular development.

2013 ◽  
Vol 19 (19-20) ◽  
pp. 2233-2241 ◽  
Author(s):  
Ciara Leydon ◽  
Joshua A. Selekman ◽  
Sean Palecek ◽  
Susan L. Thibeault

2012 ◽  
Vol 53 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Susan A. Thompson ◽  
Paul W. Burridge ◽  
Elizabeth A. Lipke ◽  
Michael Shamblott ◽  
Elias T. Zambidis ◽  
...  

2014 ◽  
Vol 140 (1) ◽  
pp. 236-245 ◽  
Author(s):  
Srikumar Sengupta ◽  
Brian Patrick Johnson ◽  
Scott Allen Swanson ◽  
Ron Stewart ◽  
Christopher Alan Bradfield ◽  
...  

2018 ◽  
Vol 1864 (5) ◽  
pp. 1960-1967 ◽  
Author(s):  
Ilvy M.E. Geraets ◽  
Dipanjan Chanda ◽  
Florence H.J. van Tienen ◽  
Arthur van den Wijngaard ◽  
Rick Kamps ◽  
...  

2016 ◽  
Vol 38 (2) ◽  
pp. 646-658 ◽  
Author(s):  
Julius Niehoff ◽  
Matthias Matzkies ◽  
Filomain Nguemo ◽  
Jürgen Hescheler ◽  
Michael Reppel

Background/Aims: Heart rate variability (HRV) refers to the fluctuation of the time interval between consecutive heartbeats in humans. It has recently been discovered that cardiomyocytes derived from human embryonic and induced pluripotent stem cells show beat rate variability (BRV) that is similar to the HRV in humans. In the present study, clinical aspects of HRV were transferred to an in vitro model. The aims of the study were to explore the BRV in murine embryonic stem cell (mESC)-derived cardiomyocytes and to demonstrate the influence of antiarrhythmic drugs on BRV as has been shown in clinical trials previously. Methods: The Microelectrode Array (MEA) technique was used to perform short-term recordings of extracellular field potentials (FPs) of spontaneously beating cardiomyocytes derived from mESCs (D3 cell line, αPig-44). Offline analysis was focused on time domain and nonlinear methods. Results: The Poincaré-Plot analysis of measurements without pharmacological intervention revealed that three different shapes of scatter plots occurred most frequently. Comparable shapes have been described in clinical studies before. The antiarrhythmic drugs Ivabradine, Verapamil and Sotalol augmented BRV, whereas Flecainide decreased BRV parameters at low concentrations (SDSD 79.0 ± 8.7% of control at 10-9 M, p < 0.05) and increased variability measures at higher concentrations (SDNN 258.8 ± 42.7% of control at 10-5 M, p < 0.05). Amiodarone and Metoprolol did not alter BRV significantly. Conclusions: Spontaneously beating cardiomyocytes derived from mESCs showed BRV that appears to be similar to the HRV known from humans. Antiarrhythmic drugs affected BRV parameters similar to clinical observations. Therefore, our study demonstrates that this in vitro model can contribute to a better understanding of electrophysiological properties of mESC-derived cardiomyocytes and might serve as a valuable tool for drug safety screening.


Sign in / Sign up

Export Citation Format

Share Document