beat rate
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Vol 146 ◽  
pp. 112589
Author(s):  
Julius Niehoff ◽  
Matthias Matzkies ◽  
Filomain Nguemo ◽  
Jürgen Hescheler ◽  
Michael Reppel

2021 ◽  
Vol 8 ◽  
Author(s):  
Yiqiu Fu ◽  
Zonghang Zhang ◽  
Zhen Zhang ◽  
Fengyuan Shen ◽  
Xiuwen Xu ◽  
...  

Animal personality refers to individual behavioral and physiological differences that are consistent over time and across context. Recently, the fish personality has gained increasing attention, especially from the perspective of aquaculture production. Here, we used an important aquaculture species, black rockfish Sebastes schlegelii, as the target animal, and conducted a series of experiments to explore the relationships among fish boldness, aggressiveness, locomotor activity, opercular beat rate, standard metabolic rate, and cortisol level. Generally, the results showed that the boldness of black rockfish was significantly, positively correlated with fish aggressiveness, stressed locomotor activity, and standard metabolic rate, while was negatively correlated with stressed opercular beat rate. Bold fish had significantly higher aggressiveness, standard metabolic rate, and stressed locomotor activity but lower stressed opercular beat rate. However, there were no significant correlations between boldness and basal locomotor activity or between boldness and basal cortisol level. These results preliminarily constructed the behavioral and physiological spectrum of black rockfish in the context of fish personality and clearly indicated that the boldness could be used as a discrimination tool to predict fish aggressiveness and metabolic rate, which may have valuable applications for decreasing fish harmful aggression and increasing fish welfare in the aquaculture industry.


2021 ◽  
Vol 22 (15) ◽  
pp. 7874
Author(s):  
Yuval Shemer ◽  
Lucy N. Mekies ◽  
Ronen Ben Jehuda ◽  
Polina Baskin ◽  
Rita Shulman ◽  
...  

LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients’ induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (If) density; (2) prolonged action potential duration and increased L-type Ca2+ current (ICa,L) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to β-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na+/Ca2+ exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy.


2021 ◽  
Author(s):  
Christina Schmid ◽  
Najah Abi-Gerges ◽  
Dietmar Zellner ◽  
Georg Rast

SUMMARYHuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and primary human cardiomyocytes are used for in vitro cardiac safety testing. hiPSC-CMs have been associated with a vast heterogeneity regarding single-cell morphology, beating behavior and action potential duration, prompting a systematic analysis of single-cell characteristics. Previously published hiPSC-CM studies revealed action potentials with nodal-, atrial- or ventricular-like morphology, although ion channel expression of singular hiPSC-CMs is not fully understood. Other studies used single-cell RNA-sequencing, however, these studies did not extensively focus on expression patterns of cardiac ion channels or failed to detect ion channel transcripts. Thus, the current study used a single-cell patch-clamp-RT-qPCR approach to get insights into single-cell electrophysiology (capacitance, action potential duration at 90% of repolarization, upstroke velocity, spontaneous beat rate, and sodium-driven fast inward current) and ion channel expression (HCN4, CACNA1G, CACNA1D, KCNA5, KCNJ4, SCN5A, KCNJ2, CACNA1D, and KCNH2), the combination of both within individual cells, and their correlations in single cardiomyocytes. We used commercially available hiPSC-CMs (iCell cardiomyocytes, atrial and ventricular Pluricytes) and primary human adult atrial and ventricular cardiomyocytes. Recordings of electrophysiological parameters revealed differences between the cell groups and variation within the hiPSC-CMs groups as well as within primary ventricular cardiomyocytes. Expression analysis on mRNA level showed no-clear-cut discrimination between primary cardiac subtypes and revealed both similarities and differences between all cell groups. Higher expression of atrial-associated ion channels in primary atrial cardiomyocytes and atrial Pluricytes compared to their ventricular counterpart indicates a successful chamber-specific hiPSC differentiation. Interpretation of correlations between the single-cell parameters was challenging, as the total data set is complex, particularly for parameters depending on multiple processes, like the spontaneous beat rate. Yet, for example, expression of SCN5A correlated well with the fast inward current amplitude for all three hiPSC-CM groups. To further enhance our understanding of the physiology and composition of the investigated hiPSC-CMs, we compared beating and non-beating cells and assessed distributions of single-cell data. Investigating the single-cell phenotypes of hiPSC-CMs revealed a combination of attributes which may be interpreted as a mixture of traits of different adult cardiac cell types: (i) nodal-related pacemaking attributes are spontaneous generation of action potentials and high HCN4 expression; and (ii) non-nodal attributes: cells have a prominent INa-driven fast inward current, a fast upstroke velocity and a high expression of SCN5A. In conclusion, the combination of nodal- and non-nodal attributes in single hiPSC-CMs may hamper the interpretation of drug effects on complex electrophysiological parameters like beat rate and action potential duration. However, the proven expression of specific ion channels enables the evaluation of drug effects on ionic currents in a more realistic environment than in recombinant systems.


2020 ◽  
Vol 8 (6) ◽  
pp. 5216-5218

In the present busy days constant monitoring of the patient’s body parameters such as temperature and heart beat rate etc., becomes difficult. In our day-to-day life health has prime importance. Maintaining the health is a daily work . Hence to remove the burden of monitoring patients health from doctor’s head. This project present the methodology for monitoring patients remotely using GSM and embedded technology


2020 ◽  
Vol 53 (2) ◽  
pp. 16457-16461
Author(s):  
Mohammad Mostafa Asheghan ◽  
Bahram Shafai ◽  
Joaquín Míguez

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jack F. Murphy ◽  
Joshua Mayourian ◽  
Francesca Stillitano ◽  
Sadek Munawar ◽  
Kathleen M. Broughton ◽  
...  

Abstract Background Delivery of stem cells to the failing heart is a promising therapeutic strategy. However, the improvement in cardiac function in animal studies has not fully translated to humans. To help bridge the gap between species, we investigated the effects of adult human cardiac stem cells (hCSCs) on contractile function of human engineered cardiac tissues (hECTs) as a species-specific model of the human myocardium. Methods Human induced pluripotent stem cell-derived cardiomyoctes (hCMs) were mixed with Collagen/Matrigel to fabricate control hECTs, with an experimental group of hCSC-supplemented hECT fabricated using a 9:1 ratio of hCM to hCSC. Functional testing was performed starting on culture day 6, under spontaneous conditions and also during electrical pacing from 0.25 to 1.0 Hz, measurements repeated at days 8 and 10. hECTs were then frozen and processed for gene analysis using a Nanostring assay with a cardiac targeted custom panel. Results The hCSC-supplemented hECTs displayed a twofold higher developed force vs. hCM-only controls by day 6, with approximately threefold higher developed stress and maximum rates of contraction and relaxation during pacing at 0.75 Hz. The spontaneous beat rate characteristics were similar between groups, and hCSC supplementation did not adversely impact beat rate variability. The increased contractility persisted through days 8 and 10, albeit with some decrease in the magnitude of the difference of the force by day 10, but with developed stress still significantly higher in hCSC-supplemented hECT; these findings were confirmed with multiple hCSC and hCM cell lines. The force-frequency relationship, while negative for both, control (− 0.687 Hz− 1; p = 0.013 vs. zero) and hCSC-supplemented (− 0.233 Hz− 1;p = 0.067 vs. zero) hECTs, showed a significant rectification in the regression slope in hCSC-supplemented hECT (p = 0.011 vs. control). Targeted gene exploration (59 genes) identified a total of 14 differentially expressed genes, with increases in the ratios of MYH7/MHY6, MYL2/MYL7, and TNNI3/TNNI1 in hCSC-supplemented hECT versus controls. Conclusions For the first time, hCSC supplementation was shown to significantly improve human cardiac tissue contractility in vitro, without evidence of proarrhythmic effects, and was associated with increased expression of markers of cardiac maturation. These findings provide new insights about adult cardiac stem cells as contributors to functional improvement of human myocardium.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Julius Niehoff ◽  
Matthias Matzkies ◽  
Filomain Nguemo ◽  
Jürgen Hescheler ◽  
Michael Reppel

Abstract Embryonic stem cell (ESC) derived tissue is a promising tool to be used in different clinical, preclinical and also scientific settings, for example as in vivo biological pacemaker, preclinical drug safety screening tool or ultimately as part of a cell replacement therapy. However, before ESC derived tissue can be used routinely for these purposes in humans, further studies are needed. In this context, the aims of the present study were to examine the effect of antiarrhythmic drugs on human ESC (hESC) und human induced pluripotent stem cell (hiPSC) derived cardiomyocytes by analyzing the beat rate variability (BRV), which can be considered as the in vitro equivalent of the heart rate variability (HRV) in vivo. Short-term recordings of extracellular field potentials of spontaneously beating cardiomyocytes derived from hESCs and hiPSCs were made using Microelectrode Arrays (MEA). The effect of Flecainide, Ivabradine and Metoprolol was tested. The offline analysis of the BRV was mainly focused on time domain methods. Additionally a non-linear analysis method was used. The evaluation of the Poincaré-Plots of the measurements without pharmacological intervention revealed that the vast majority of the scatter plots have a similar, ellipsoid shape. Flecainide and Ivabradine influenced BRV parameters significantly, whereas Metoprolol did not alter the BRV markedly. We detected remarkable similarities between the BRV of hESC and hiPSC derived cardiomyocytes in vitro and the HRV in vivo. The effect of antiarrhythmic drugs on spontaneously beating cardiomyocytes derived from hESC and hiPSC was generally consistent with clinical experiences and also with our previous study based on murine ESC derived cardiomyocytes. In conclusion, our study points out the great potential of hESC and hiPSC derived tissue to be used routinely for many different applications in medicine and science.


Sign in / Sign up

Export Citation Format

Share Document