scholarly journals Changes in the fraction of strongly attached cross bridges in mouse atrophic and hypertrophic muscles as revealed by continuous wave electron paramagnetic resonance

2019 ◽  
Vol 316 (5) ◽  
pp. C722-C730
Author(s):  
Laura Galazzo ◽  
Leonardo Nogara ◽  
Francesca LoVerso ◽  
Antonino Polimeno ◽  
Bert Blaauw ◽  
...  

Electron paramagnetic resonance (EPR), coupled with site-directed spin labeling, has been proven to be a particularly suitable technique to extract information on the fraction of myosin heads strongly bound to actin upon muscle contraction. The approach can be used to investigate possible structural changes occurring in myosin of fiber s altered by diseases and aging. In this work, we labeled myosin at position Cys707, located in the SH1-SH2 helix in the myosin head cleft, with iodoacetamide spin label, a spin label that is sensitive to the reorientational motion of this protein during the ATPase cycle and characterized the biochemical states of the labeled myosin head by means of continuous wave EPR. After checking the sensitivity and the power of the technique on different muscles and species, we investigated whether changes in the fraction of strongly bound myosin heads might explain the contractile alterations observed in atrophic and hypertrophic murine muscles. In both conditions, the difference in contractile force could not be justified simply by the difference in muscle mass. Our results showed that in atrophic muscles the decrease in force generation was attributable to a lower fraction of strongly bound cross bridges during maximal activation. In contrast in hypertrophic muscles, the increase in force generation was likely due to several factors, as pointed out by the comparison of the EPR experiments with the tension measurements on single skinned fibers.

1999 ◽  
Vol 46 (4) ◽  
pp. 889-899 ◽  
Author(s):  
J Pyka ◽  
A Osyczka ◽  
B Turyna ◽  
W Blicharski ◽  
W Froncisz

A cysteine-specific methanethiosulfonate spin label was introduced into yeast iso-1-cytochrome c at three different positions. The modified forms of cytochrome c included: the wild-type protein labeled at naturally occurring C102, and two mutated proteins, S47C and L85C, labeled at positions 47 and 85, respectively (both S47C and L85C derived from the protein in which C102 had been replaced by threonine). All three spin-labeled protein derivatives were characterized using electron paramagnetic resonance (EPR) techniques. The continuous wave (CW) EPR spectrum of spin label attached to L85C differed from those recorded for spin label attached to C102 or S47C, indicating that spin label at position 85 was more immobilized and exhibited more complex tumbling than spin label at two other positions. The temperature dependence of the CW EPR spectra and CW EPR power saturation revealed further differences of spin-labeled L85C. The results were discussed in terms of application of the site-directed spin labeling technique in probing the local dynamic structure of iso-1-cytochrome c.


2016 ◽  
Vol 172 (1-3) ◽  
pp. 133-138 ◽  
Author(s):  
Hanan Elajaili ◽  
Joseph McPeak ◽  
Alexander Romanyukha ◽  
Priyanka Aggarwal ◽  
Sandra S. Eaton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document