scholarly journals Comparison of Continuous Wave and Rapid Scan X-band Electron Paramagnetic Resonance of Irradiated Clipped Fingernails

2016 ◽  
Vol 172 (1-3) ◽  
pp. 133-138 ◽  
Author(s):  
Hanan Elajaili ◽  
Joseph McPeak ◽  
Alexander Romanyukha ◽  
Priyanka Aggarwal ◽  
Sandra S. Eaton ◽  
...  
1996 ◽  
Vol 97 (8) ◽  
pp. 669-674 ◽  
Author(s):  
Jean-Claude Bissey ◽  
René Berger ◽  
Pierre Béziade ◽  
Nguyen-Ba Chanh ◽  
Thierry Maris ◽  
...  

2016 ◽  
Vol 230 (5-7) ◽  
Author(s):  
Nathalie Kunkel ◽  
Rolf Böttcher ◽  
Tilo Pilling ◽  
Holger Kohlmann ◽  
Andreas Pöppl

AbstractMetal hydrides exhibit interesting properties as hosts for Eu(II) containing luminescent compounds due to the nephelauxetic effect and the strong ligand field of the hydride anion. In order to elucidate the lattice site symmetry of europium dopants, Q-band and X-band electron paramagnetic resonance (EPR) spectra were collected on LiMH


2018 ◽  
Vol 115 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Steven G. Swarts ◽  
Jason W. Sidabras ◽  
Oleg Grinberg ◽  
Dmitriy S. Tipikin ◽  
Maciej M. Kmiec ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 673-687
Author(s):  
Silvio Künstner ◽  
Anh Chu ◽  
Klaus-Peter Dinse ◽  
Alexander Schnegg ◽  
Joseph E. McPeak ◽  
...  

Abstract. Electron paramagnetic resonance (EPR) spectroscopy is the method of choice to investigate and quantify paramagnetic species in many scientific fields, including materials science and the life sciences. Common EPR spectrometers use electromagnets and microwave (MW) resonators, limiting their application to dedicated lab environments. Here, novel aspects of voltage-controlled oscillator (VCO)-based EPR-on-a-Chip (EPRoC) detectors are discussed, which have recently gained interest in the EPR community. More specifically, it is demonstrated that with a VCO-based EPRoC detector, the amplitude-sensitive mode of detection can be used to perform very fast rapid-scan EPR experiments with a comparatively simple experimental setup to improve sensitivity compared to the continuous-wave regime. In place of a MW resonator, VCO-based EPRoC detectors use an array of injection-locked VCOs, each incorporating a miniaturized planar coil as a combined microwave source and detector. A striking advantage of the VCO-based approach is the possibility of replacing the conventionally used magnetic field sweeps with frequency sweeps with very high agility and near-constant sensitivity. Here, proof-of-concept rapid-scan EPR (RS-EPRoC) experiments are performed by sweeping the frequency of the EPRoC VCO array with up to 400 THz s−1, corresponding to a field sweep rate of 14 kT s−1. The resulting time-domain RS-EPRoC signals of a micrometer-scale BDPA sample can be transformed into the corresponding absorption EPR signals with high precision. Considering currently available technology, the frequency sweep range may be extended to 320 MHz, indicating that RS-EPRoC shows great promise for future sensitivity enhancements in the rapid-scan regime.


2015 ◽  
Vol 184 (2) ◽  
pp. 175 ◽  
Author(s):  
Zhelin Yu ◽  
Alexander Romanyukha ◽  
Sandra S. Eaton ◽  
Gareth R. Eaton

2000 ◽  
Vol 609 ◽  
Author(s):  
Takashi Ehara ◽  
Tadaaki Ikoma ◽  
Shozo Tero-Kubota

ABSTRACTDangling bond defects (DB) in silicon microcrystallines and clusters embedded in SiO2 have been studied by X- and Q-band electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra due to the DB were remarkably depending on the grain size, which was controlled by annealing temperature. The microcrystalline containing film shows a broad and unsymmetrical EPR signal at g = 2.006 with the line width of 13 G in X-band spectra. The signal can be simulated by using the anisotropic g-values of Pb center. The Si cluster samples obtained from the annealing at less than 800°C give an asymmetric EPR spectra at about g = 2.004 with the line width of about 9 G in X-band. The EPR signal due to the E' center was also observed.


Sign in / Sign up

Export Citation Format

Share Document