SRC family kinases in cell volume regulation

2005 ◽  
Vol 288 (3) ◽  
pp. C483-C493 ◽  
Author(s):  
David M. Cohen

SRC family kinases are a group of nine cytoplasmic protein tyrosine kinases essential for many cell functions. Some appear to be ubiquitously expressed, whereas others are highly tissue specific. The ability of members of the SRC family to influence ion transport has been recognized for several years. Mounting evidence suggests a broad role for SRC family kinases in the cell response to both hypertonic and hypotonic stress, and in the ensuing regulatory volume increase or decrease. In addition, members of this tyrosine kinase family participate in the mechanotransduction that accompanies cell membrane deformation. Finally, at least one SRC family member operates in concert with the p38 MAPK to regulate tonicity-dependent gene transcription.

1994 ◽  
Vol 14 (1) ◽  
pp. 147-155
Author(s):  
B S Cobb ◽  
M D Schaller ◽  
T H Leu ◽  
J T Parsons

Changes in cellular growth and dramatic alterations in cell morphology and adhesion are common features of cells transformed by oncogenic protein tyrosine kinases, such as pp60src and other members of the Src family. In this report, we present evidence for the stable association of two Src family kinases (pp60src and pp59fyn) with tyrosine-phosphorylated forms of a focal adhesion-associated protein tyrosine kinase, pp125FAK. In Src-transformed chicken embryo cells, most of the pp125FAK was stably complexed with activated pp60src (e.g., pp60(527F). The stable association of pp125FAK with pp60(527F) in vivo required the structural integrity of the Src SH2 domain. The association of pp60(527F) and pp125FAK could be reconstituted in vitro by incubation of normal cell extracts with glutathione S-transferase fusion proteins containing SH2 or SH3/SH2 domains of pp60src. Furthermore, the association of isolated SH2 or SH3/SH2 domains with in vitro 32P-labeled pp125FAK protected the major site of pp125FAK autophosphorylation from digestion with a tyrosine phosphatase, indicating that the autophosphorylation site of pp125FAK participates in binding with Src. Immunoprecipitation of Src family kinases from extracts of normal chicken embryo cells revealed stable complexes of pp59fyn and tyrosine-phosphorylated pp125FAK. These data provide evidence for a direct interaction between two cytoplasmic nonreceptor protein tyrosine kinases and suggest that Src may contribute to changes in pp125FAK regulation in transformed cells. Furthermore, pp125FAK may directly participate in the targeting of pp59fyn or possibly other Src family kinases to focal adhesions in normal cells.


1997 ◽  
Vol 272 (1) ◽  
pp. C191-C202 ◽  
Author(s):  
L. Jiang ◽  
M. N. Chernova ◽  
S. L. Alper

Xenopus oocytes lack volume regulation and Cl/anion-exchange (AE) activity but express endogenous Na+/H+ exchange (NHE). We postulated that expression in oocytes of heterologous anion exchangers might allow regulatory volume increase (RVI) via functional coupling with endogenous NHE. Expression of neither erythroid nor kidney isoforms of AE1 conferred any form of RVI. In contrast, although AE2 expression did not confer primary RVI, it did confer on oocytes secondary RVI, with a requirement for hypotonic swelling before hypertonic shrinkage. This secondary RVI required extracellular Cl- and Na+, was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and amiloride, was bumetanide insensitive, and was blocked by prevention of intracellular alkalinization, all properties consistent with functional coupling of AE2-mediated Cl-/HCO3- exchange and endogenous NHE. RVI was unaffected by CO2-HCO3- or by partial oocyte Cl- depletion and was unrelated to the rate of oocyte shrinkage. Prior hypotonic swelling did not significantly alter subsequent hypertonic stimulation of AE2-mediated 36Cl influx or efflux. We conclude that heterologous AE2 expression suffices to confer volume regulation on Xenopus oocytes that lack intrinsic volume-regulatory mechanisms.


1999 ◽  
Vol 73 (6) ◽  
pp. 4631-4639 ◽  
Author(s):  
Jens-Christian Albrecht ◽  
Ute Friedrich ◽  
Christian Kardinal ◽  
Jadranka Koehn ◽  
Bernhard Fleckenstein ◽  
...  

ABSTRACT Herpesvirus ateles is a gamma-2-herpesvirus which naturally infects spider monkeys (Ateles spp.) and causes malignant lymphoproliferative disorders in various other New World primates. The genomic sequence of herpesvirus ateles strain 73 revealed a close relationship to herpesvirus saimiri, with a high degree of variability within the left terminus of the coding region. A spliced mRNA transcribed from this region was detected in New World monkey T-cell lines transformed by herpesvirus ateles in vitro or derived from T cells of infected Saguinus oedipus. The encoded viral protein, termed Tio, shows restricted homology to the oncoprotein StpC and to the tyrosine kinase-interacting protein Tip, two gene products responsible for the T-cell-transforming and oncogenic phenotype of herpesvirus saimiri group C strains. Tio was detectable in lysates of the transformed T lymphocytes. Dimer formation was observed after expression of recombinant Tio. After cotransfection, Tio was phosphorylated in vivo by the protein tyrosine kinases Lck and Src and less efficiently by Fyn. Stable complexes of these Src family kinases with the viral protein were detected in lysates of the transfected cells. Binding analyses indicated a direct interaction of Tio with the SH3 domains of Lyn, Hck, Lck, Src, Fyn, and Yes. In addition, tyrosine-phosphorylated Tio bound to the SH2 domains of Lck, Src, or Fyn. Thus, herpesvirus ateles-encoded Tio may contribute to viral T-cell transformation by influencing the function of Src family kinases.


2000 ◽  
Vol 279 (1) ◽  
pp. G40-G48 ◽  
Author(s):  
Thorsten Sonnentag ◽  
Wolf-Kristian Siegel ◽  
Oliver Bachmann ◽  
Heidi Rossmann ◽  
Andreas Mack ◽  
...  

Concomitant Na+/H+ and Cl−/HCO3 − exchange activation occurs during stimulation of acid secretion in cultured rabbit parietal cells, possibly related to a necessity for volume regulation during the secretory process. We investigated whether cytoplasmic volume changes occur during secretagogue stimulation of cultured rabbit parietal cells. Cells were loaded with the fluorescent dye calcein, and the calcein concentration within a defined cytoplasmic volume was recorded by confocal microscopy. Forskolin at 10−5 M, carbachol at 10−4 M, and hyperosmolarity (400 mosmol) resulted in a rapid increase in the cytoplasmic dye concentration by 21 ± 6, 9 ± 4, and 23 ± 5%, respectively, indicative of cell shrinkage, followed by recovery to baseline within several minutes, indicative of regulatory volume increase (RVI). Depolarization by 5 mM barium resulted in a decrease of the cytoplasmic dye concentration by 10 ± 2%, indicative of cell swelling, with recovery within 15 min, and completely prevented forskolin- or carbachol-induced cytoplasmic shrinkage. Na+/H+ exchange inhibitors slightly reduced the initial cell shrinkage and significantly slowed the RVI, whereas 100 μM bumetanide had no significant effect on either parameter. We conclude that acid secretagoguges induce a rapid loss of parietal cell cytoplasmic volume, followed by RVI, which is predominantly mediated by Na+/H+ and Cl−/HCO3 − exchange.


1989 ◽  
Vol 257 (6) ◽  
pp. C1158-C1165 ◽  
Author(s):  
D. Rotin ◽  
S. Grinstein

To elucidate the mechanism of regulatory volume increase (RVI) in Chinese hamster ovary cells, Na(+)-H+ exchange-deficient mutants, called AP-1, were derived from WT-5 cells, a wildtype subclone. The absence of functional antiports in AP-1 cells was established through measurements of intracellular pH (pHi) and Na+ uptake. Cells exposed to hypotonic medium initially swelled but regained near-normal volume within minutes. When isotonicity was then restored, WT-5 cells shrank immediately and then carried out RVI, which was inhibited by 0.1 mM amiloride. This amiloride-sensitive RVI was absent in the AP-1 mutants, suggesting involvement of Na(+)-H+ exchange. In some cell types, RVI is mediated by Na(+)-K(+)-2Cl- cotransport. Bumetanide-sensitive 86Rb+ (K+) influx was detectable in both WT-5 and AP-1 cells, suggesting the presence of Na(+)-K(+)-2Cl- cotransport. Bumetanide-sensitive influx was stimulated by osmotic shrinking in WT-5 cells, and only slightly in AP-1 cells. However, Na(+)-K(+)-2Cl- cotransport did not contribute to volume regulation, since bumetanide (50 microM) failed to inhibit RVI in osmotically shrunken WT-5 cells. The inability of cotransport to induce a volume gain in WT-5 cells was attributable to the simultaneous stimulation of Na(+)-K(+)-2Cl- efflux. The rate of efflux was similar in magnitude to the corresponding influx rate so that net Na(+)-K(+)-2Cl- cotransport was negligible. These results show that RVI in osmotically shrunken Chinese hamster ovary cells is mediated by the Na(+)-H+ antiport and that, although stimulated, Na(+)-K(+)-2Cl- cotransport does not contribute to anisosmotic volume regulation.


1989 ◽  
Vol 257 (6) ◽  
pp. C1093-C1100 ◽  
Author(s):  
L. Rome ◽  
J. Grantham ◽  
V. Savin ◽  
J. Lohr ◽  
C. Lechene

Nonperfused proximal S2 segments from rabbit kidney cortex have been shown to keep cell volume constant as medium osmolality is slowly raised but to shrink and not exhibit regulatory volume increase (RVI) if medium osmolality is abruptly elevated (J. Lohr and J. Grantham. J. Clin. Invest. 78: 1165-1172, 1986). In the current study, 0.5 mM butyrate in the medium 1) extended the range from 361 to 450 mosmol/kgH2O over which cells maintained volume constant as osmolality was gradually raised and 2) restored RVI after cell shrinkage when osmolality was rapidly raised from 295 to 400 mosmol/kgH2O. Volume regulation was associated with net increases in intracellular Na+ and Cl- but no change in K+ (measured by electron probe). The increments in Na+ and Cl- were insufficient to account for the total addition of osmolytes required for volume maintenance or restoration. The fraction of the expected increase in intracellular osmoles accounted for by the increase in [(K+)i + (Na+)i + (Cl-)i] was 52 and 21% for gradual and rapid osmotic changes, respectively. We conclude that butyrate enhances the capacity of S2 segments to regulate volume in hyperosmotic medium by promoting addition of Na+ and Cl- and by other undermined factors.


2010 ◽  
Vol 88 (3) ◽  
pp. 505-512 ◽  
Author(s):  
Sang-Bing Ong ◽  
Dinesh Shah ◽  
Ala Qusous ◽  
Simon M. Jarvis ◽  
Mark J.P. Kerrigan

Chondrocytes, the resident cell-type of articular cartilage, are responsible for the regulation of the extracellular matrix (ECM) in response to their physico-chemical environment. Due to the nature of cartilage loading, chondrocytes are exposed to constant changes in extracellular osmolality with a gradual increase throughout the day. As an increase in osmolality attenuates matrix synthesis, we have studied cell volume regulation (regulatory volume increase (RVI)) after hypertonic challenge and the regulation of RVI by the actin cytoskeleton. Using freshly isolated avian articular chondrocytes, changes in actin organisation were studied by confocal laser scanning microscopy following a 43% increase in extracellular osmolality. Using calcein-loading chondrocytes, the capacity for RVI was determined and the rate of volume recovery (t1/2) mathematically extrapolated. Following an increase in extracellular osmolality there was a significant increase (p < 0.05) in cortical actin, inhibited by the removal of extracellular calcium EGTA or by the addition of 100 µmol·L–1 gadolinium chloride. Most cells exhibited slow RVI (t1/2 = 55.5 ± 5.5 min), whereby inhibition of actin polymerisation by gadolinium chloride or the removal of extracellular calcium significantly increased the rate of volume recovery via a bumetanide-sensitive pathway (t1/2 of 29.6 ± 6.5 min and 13.8 ± 3.1 min, respectively). These data suggest the Na+–K+–2Cl– (NKCC) co-transporter regulated by the actin cytoskeleton is involved in avian chondrocyte RVI.


1999 ◽  
Vol 277 (4) ◽  
pp. F580-F586 ◽  
Author(s):  
Ofelia S. Ruiz ◽  
R. Brooks Robey ◽  
Yi-Yong Qiu ◽  
Long Jiang Wang ◽  
Cheng Jin Li ◽  
...  

We have previously shown that CO2 stimulation of the renal Na-HCO3 cotransporter (NBC) activity is abrogated by general inhibitors of protein tyrosine kinases. The more selective inhibitor herbimycin also blocked this effect at concentrations known to preferentially inhibit Src family kinases (SFKs). We therefore examined a role for SFKs in CO2-stimulated NBC activity. To this end, we engineered OK cells to express the COOH-terminal Src kinase (Csk), a negative regulator of SFKs. CO2 stimulated NBC activity normally in β-galactosidase-expressing and untransfected control cells. In contrast, Csk-expressing cells had normal baseline NBC activity that was not stimulated by CO2. CO2 stimulation increased both total SFK activity and specific tyrosine phosphorylation of Src. The specific MEK1/2 inhibitor PD-98059 completely inhibited the CO2 stimulation of NBC activity as well as the accompanying phosphorylation and activation of ERK1/2. Our data suggest the involvement of both SFKs, probably Src, and the “classic” MAPK pathway in mediating CO2-stimulated NBC activity in renal epithelial cells.


2001 ◽  
Vol 28 (10) ◽  
pp. 799-803 ◽  
Author(s):  
Kazumasa Shinozuka ◽  
Naoko Tanaka ◽  
Kumiko Kawasaki ◽  
Hideya Mizuno ◽  
Yoko Kubota ◽  
...  

1995 ◽  
Vol 15 (2) ◽  
pp. 1102-1109 ◽  
Author(s):  
S Roche ◽  
M Koegl ◽  
M V Barone ◽  
M F Roussel ◽  
S A Courtneidge

The Src family of protein tyrosine kinases have been implicated in the response of cells to several ligands. These include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and colony stimulating factor type 1 (CSF-1, in macrophages and in fibroblasts engineered to express the receptor). We recently described a microinjection approach which we used to demonstrate that Src family kinases are required for PDGF-induced S phase entry of fibroblasts. We now use this approach to ask whether other ligands also require Src kinases to stimulate cells to replicate DNA. An antibody specific for the carboxy terminus of Src, Fyn, and Yes (anti-cst.1) inhibited Src kinase activity in vitro and caused morphological reversion of Src transformed cells in vivo. Microinjection of this antibody was used to demonstrate that Src kinases were required for both CSF-1 and EGF to drive cells into the S phase. Expression of a kinase-inactive form of Src family kinases also prevented EGF- and CSF-1-stimulated DNA synthesis. However, even though the Src family kinases were necessary for both PDGF- and EGF-induced DNA synthesis in Swiss 3T3 cells, the responses to two other potent growth factors for these cells, lysophosphatidic acid and bombesin, were unaffected by the neutralizing antibodies. Therefore, some but not all growth factors required functional Src family kinases to transmit mitogenic responses.


Sign in / Sign up

Export Citation Format

Share Document