Agonist-induced cytoplasmic volume changes in cultured rabbit parietal cells

2000 ◽  
Vol 279 (1) ◽  
pp. G40-G48 ◽  
Author(s):  
Thorsten Sonnentag ◽  
Wolf-Kristian Siegel ◽  
Oliver Bachmann ◽  
Heidi Rossmann ◽  
Andreas Mack ◽  
...  

Concomitant Na+/H+ and Cl−/HCO3 − exchange activation occurs during stimulation of acid secretion in cultured rabbit parietal cells, possibly related to a necessity for volume regulation during the secretory process. We investigated whether cytoplasmic volume changes occur during secretagogue stimulation of cultured rabbit parietal cells. Cells were loaded with the fluorescent dye calcein, and the calcein concentration within a defined cytoplasmic volume was recorded by confocal microscopy. Forskolin at 10−5 M, carbachol at 10−4 M, and hyperosmolarity (400 mosmol) resulted in a rapid increase in the cytoplasmic dye concentration by 21 ± 6, 9 ± 4, and 23 ± 5%, respectively, indicative of cell shrinkage, followed by recovery to baseline within several minutes, indicative of regulatory volume increase (RVI). Depolarization by 5 mM barium resulted in a decrease of the cytoplasmic dye concentration by 10 ± 2%, indicative of cell swelling, with recovery within 15 min, and completely prevented forskolin- or carbachol-induced cytoplasmic shrinkage. Na+/H+ exchange inhibitors slightly reduced the initial cell shrinkage and significantly slowed the RVI, whereas 100 μM bumetanide had no significant effect on either parameter. We conclude that acid secretagoguges induce a rapid loss of parietal cell cytoplasmic volume, followed by RVI, which is predominantly mediated by Na+/H+ and Cl−/HCO3 − exchange.

1989 ◽  
Vol 257 (6) ◽  
pp. C1093-C1100 ◽  
Author(s):  
L. Rome ◽  
J. Grantham ◽  
V. Savin ◽  
J. Lohr ◽  
C. Lechene

Nonperfused proximal S2 segments from rabbit kidney cortex have been shown to keep cell volume constant as medium osmolality is slowly raised but to shrink and not exhibit regulatory volume increase (RVI) if medium osmolality is abruptly elevated (J. Lohr and J. Grantham. J. Clin. Invest. 78: 1165-1172, 1986). In the current study, 0.5 mM butyrate in the medium 1) extended the range from 361 to 450 mosmol/kgH2O over which cells maintained volume constant as osmolality was gradually raised and 2) restored RVI after cell shrinkage when osmolality was rapidly raised from 295 to 400 mosmol/kgH2O. Volume regulation was associated with net increases in intracellular Na+ and Cl- but no change in K+ (measured by electron probe). The increments in Na+ and Cl- were insufficient to account for the total addition of osmolytes required for volume maintenance or restoration. The fraction of the expected increase in intracellular osmoles accounted for by the increase in [(K+)i + (Na+)i + (Cl-)i] was 52 and 21% for gradual and rapid osmotic changes, respectively. We conclude that butyrate enhances the capacity of S2 segments to regulate volume in hyperosmotic medium by promoting addition of Na+ and Cl- and by other undermined factors.


1992 ◽  
Vol 288 (2) ◽  
pp. 681-689 ◽  
Author(s):  
D Häussinger ◽  
C Hallbrucker ◽  
N Saha ◽  
F Lang ◽  
W Gerok

The interaction between cell volume and taurocholate excretion into bile was studied in isolated perfused rat liver. Cell swelling due to hypo-osmotic exposure, addition of amino acids or insulin stimulated taurocholate excretion into bile and bile flow, whereas hyperosmotic cell shrinkage inhibited these. These effects were explained by changes in Vmax of taurocholate excretion into bile: Vmax. increased from about 300 to 700 nmol/min per g after cell swelling by 12-15% caused by either hypo-osmotic exposure or addition of amino acids under normo-osmotic conditions. Steady-state taurocholate excretion into bile was not affected when the influent K+ concentration was increased from 6 to 46 mM or decreased to 1 mM with iso-osmoticity being maintained by corresponding changes in the influent Na+ concentration. Replacement of 40 mM-NaCl by 80 mM-sucrose decreased taurocholate excretion into bile by about 70%; subsequent hypo-osmotic exposure by omission of sucrose increased taurocholate excretion to 160%. Only minor, statistically insignificant, effects of aniso-osmotic cell volume changes on the appearance of bolus-injected horseradish peroxidase in bile were observed. Taurocholate (400 microM) exhibited a cholestatic effect during hyperosmotic cell shrinkage, but not during hypo-osmotic cell swelling. Both taurocholate and tauroursodeoxycholate increased liver cell volume. Tauroursodeoxycholate stimulated taurocholate (100 microM) excretion into bile. This stimulatory effect was strongly dependent on the extent of tauroursodeoxycholate-induced cell swelling. During continuous infusion of taurocholate (100 microM) further addition of tauroursodeoxycholate at concentrations of 20, 50 and 100 microM increased cell volume by 10, 8 and 2% respectively, in parallel with a stimulation of taurocholate excretion into bile by 29, 27 and 9% respectively. There was a close relationship between the extent of cell volume changes and taurocholate excretion into bile, regardless of whether cell volume was modified by tauroursodeoxycholate, amino acids or aniso-osmotic exposure. The data suggest that: (i) liver cell volume is one important factor determining bile flow and biliary taurocholate excretion; (ii) swelling-induced stimulation of taurocholate excretion into bile is probably not explained by alterations of the membrane potential; (iii) bile acids modulate liver cell volume; (iv) taurocholate-induced cholestasis may depend on cell volume; (v) stimulation of taurocholate excretion into bile by tauroursodeoxycholate can largely be explained by tauroursodeoxycholate-induced cell swelling.


1990 ◽  
Vol 258 (3) ◽  
pp. F530-F536 ◽  
Author(s):  
L. Schild ◽  
P. S. Aronson ◽  
G. Giebisch

We used real-time recordings of cell volume changes to test for the role of the Cl(-)-formate exchanger in mediating NaCl entry across the apical membrane of rabbit proximal tubule cells. In the absence of extracellular Cl-, 0.5 and 5 mM formate in the tubule lumen induced an increase in cell volume of 1 and 9%, respectively. Formate-induced cell swelling was reduced by alkalinizing the tubule lumen or by addition of luminal amiloride (2 mM), indicating that the increase in cell volume results from the intracellular accumulation of Na-formate via nonionic diffusion of formic acid in parallel with Na(+)-H+ exchange. The cell volume increase induced by 0.5 mM formate was potentiated (from 1 to 4%) by Cl-, as expected for a formate-mediated stimulation of NaCl uptake via parallel Cl(-)-formate exchange and Na(+)-H+ exchange across the apical membrane. By contrast, the cell volume increase induced by 5 mM formate was attenuated (from 9 to 4%) by Cl-. The attenuating effect of Cl- on formate-induced cell swelling required the operation of the apical membrane Cl(-)-formate exchanger. The effect of 1:1 Cl(-)-formate exchange to attenuate formate-induced cell swelling can be explained if the cell possesses a volume-activated anion exit pathway, most likely at the basolateral cell membrane, that is capable of mediating the efflux of Cl- but not formate from the cell.


2007 ◽  
Vol 292 (3) ◽  
pp. G711-G717 ◽  
Author(s):  
Oliver Bachmann ◽  
Alexander Heinzmann ◽  
Andreas Mack ◽  
Michael P. Manns ◽  
Ursula Seidler

We have previously shown that stimulation of acid secretion in parietal cells causes rapid initial cell shrinkage, followed by Na+/H+ exchange-mediated regulatory volume increase (RVI). The factors leading to the initial cell shrinkage are unknown. We therefore monitored volume changes in cultured rabbit parietal cells by confocal measurement of the cytoplasmic calcein concentration. Although blocking the presumably apically located K+ channel KCNQ1 with chromanol 293b reduced both the forskolin- and carbachol-induced cell shrinkage, inhibition of Ca2+-sensitive K+ channels with charybdotoxin strongly inhibited the cell volume decrease after carbachol, but not after forskolin stimulation. The cell shrinkage induced by both secretagogues was partially inhibited by blocking H+-K+-ATPase with SCH28080 and completely absent after incubation with NPPB, which inhibits parietal cell anion conductances involved in acid secretion. The subsequent RVI was strongly inhibited with the Na+/H+ exchanger 1 (NHE1)-specific concentration of HOE642 and completely by 500 μM dimethyl-amiloride (DMA), which also inhibits NHE4. None of the above substances induced volume changes under baseline conditions. Our results indicate that cell volume decrease associated with acid secretion is dependent on the activation of K+ and Cl− channels by the respective secretagogues. K+, Cl−, and water secretion into the secretory canaliculi is thus one likely mechanism of stimulation-associated cell shrinkage in cultured parietal cells. The observed RVI is predominantly mediated by NHE1.


1983 ◽  
Vol 82 (5) ◽  
pp. 619-638 ◽  
Author(s):  
S Grinstein ◽  
C A Clarke ◽  
A Rothstein

After swelling in hypotonic solutions, peripheral blood mononuclear cells (PBM) shrink toward their original volumes. Upon restoration of isotonicity, the cells initially shrink but then regain near-normal size again. This regulatory volume increase (RVI) is abolished by removal of Na+o or Cl-o or by addition of amiloride. RVI is unaffected by removal of K+o or by ouabain and is only partially inhibited by 1 mM furosemide. As a result of increased influx, the cells gain both Na+ and K+ during reswelling. In contrast, only Na+ content increases in the presence of ouabain. Amiloride largely eliminates the changes in the content of both cations. Using diS-C3-(5), no significant membrane potential changes were detected during RVI, which suggests that the fluxes are electroneutral. The cytoplasmic pH of volume-static cells was measured with 5,6-dicarboxyfluorescein. After acid loading, the addition of extracellular Na+ induced an amiloride-inhibitable alkalinization, which is consistent with Na+/H+ exchange. Cytoplasmic pH was not affected by cell shrinkage itself, but an internal alkalinization, which was also amiloride sensitive and Na+ dependent, developed during reswelling. In isotonic lightly buffered solutions without HCO-3, an amiloride-sensitive acidification of the medium was measurable when Na+ was added to shrunken PBM. K+ was unable to mimic this effect. The observations are compatible with the model proposed by Cala (J. Gen. Physiol. 1980. 76:683-708), whereby an electroneutral Na+o/H+i exchange is activated by osmotic shrinking. Cellular volume gain occurs as Cl-o simultaneously exchanges for either HCO-3i or OH-i. Na+i is secondarily replaced by K+ through the pump, but this step is not essential for RVI.


1990 ◽  
Vol 258 (4) ◽  
pp. C630-C638 ◽  
Author(s):  
A. G. Butt ◽  
W. L. Clapp ◽  
R. A. Frizzell

Increased basolateral membrane K conductance accompanies stimulation of Cl secretion across canine trachea. To assess the K conductance properties, we permeabilized the apical membranes with amphotericin B and monitored the current and conductance caused by K flow across the basolateral membranes. Under basal unstimulated conditions, two K conductances could be distinguished by blockers. One was inhibited only by barium; the other was sensitive also to quinidine and lidocaine. The permeabilities of the basal conductance pathways to K and Rb were similar (PK/PRb approximately equal to 1.5). The secretory agonist, epinephrine, selectively increased the quinidine-insensitive conductance, implicating it in the Cl secretory response. Cell swelling induced a third conductance with a low permeability to Rb (PK/PRb approximately equal to 10) that was quinidine sensitive. In tissues not treated with amphotericin, neither quinidine nor Rb-for-K replacement inhibited transepithelial Cl secretion. Thus neither of the quinidine-sensitive K conductances (basal or swelling induced) contribute to the increase in basolateral K conductance during Cl secretion. Cell shrinkage inhibited all three conductances and secretion, suggesting that the initial priority of the cell is volume regulation.


2021 ◽  
Vol 55 (S1) ◽  
pp. 119-134

BACKGROUND/AIMS: Arginine vasopressin (AVP) neurons play an important role for sensing a change in the plasma osmolarity and thereby responding with regulated AVP secretion in order to maintain the body fluid homeostasis. The osmo-sensing processes in magnocellular neurosecretory cells (MNCs) including AVP and oxytocin (OXT) neurons of the hypothalamus were reported to be coupled to sustained osmotic shrinkage or swelling without exhibiting discernible cell volume regulation. Since increasing evidence has shown some important differences in properties between AVP and OXT neurons, osmotic volume responses are to be reexamined with distinguishing these cell types from each other. We previously reported that AVP neurons identified by transgenic expression of enhanced green fluorescence protein (eGFP) possess the ability of regulatory volume decrease (RVD) after hypoosmotic cell swelling. Thus, in the present study, we examined the ability of regulatory volume increase (RVI) after hyperosmotic cell shrinkage in AVP neurons. METHODS: Here, we used eGFP-identified AVP neurons acutely dissociated from AVP-eGFP transgenic rats. We performed single-cell size measurements, cytosolic RT-PCR analysis, AVP secretion measurements, and patch-clamp studies. RESULTS: The AVP neurons were found to respond to a hyperosmotic challenge with physiological cell shrinkage caused by massive secretion of AVP, called a secretory volume decrease (SVD), superimposed onto physical osmotic cell shrinkage, and also to exhibit the ability of RVI coping with osmotic and secretory cell shrinkage. Furthermore, our pharmacological and molecular examinations indicated that AVP secretion and its associated SVD event are triggered by activation of T-type Ca2+ channels, and the RVI event is attained by parallel operation of Na+/H+ exchanger and Cl-/HCO3- anion exchanger. CONCLUSION: Thus, it is concluded that AVP neurons respond to hyperosmotic stimulation with the regulatory volume increase and the secretory volume increase by activating ion transporters and Ca2+ channels, respectively.


1997 ◽  
Vol 272 (1) ◽  
pp. C191-C202 ◽  
Author(s):  
L. Jiang ◽  
M. N. Chernova ◽  
S. L. Alper

Xenopus oocytes lack volume regulation and Cl/anion-exchange (AE) activity but express endogenous Na+/H+ exchange (NHE). We postulated that expression in oocytes of heterologous anion exchangers might allow regulatory volume increase (RVI) via functional coupling with endogenous NHE. Expression of neither erythroid nor kidney isoforms of AE1 conferred any form of RVI. In contrast, although AE2 expression did not confer primary RVI, it did confer on oocytes secondary RVI, with a requirement for hypotonic swelling before hypertonic shrinkage. This secondary RVI required extracellular Cl- and Na+, was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and amiloride, was bumetanide insensitive, and was blocked by prevention of intracellular alkalinization, all properties consistent with functional coupling of AE2-mediated Cl-/HCO3- exchange and endogenous NHE. RVI was unaffected by CO2-HCO3- or by partial oocyte Cl- depletion and was unrelated to the rate of oocyte shrinkage. Prior hypotonic swelling did not significantly alter subsequent hypertonic stimulation of AE2-mediated 36Cl influx or efflux. We conclude that heterologous AE2 expression suffices to confer volume regulation on Xenopus oocytes that lack intrinsic volume-regulatory mechanisms.


1992 ◽  
Vol 263 (3) ◽  
pp. C584-C589 ◽  
Author(s):  
P. A. Negulescu ◽  
B. Munck ◽  
T. E. Machen

The effects of osmotically induced changes in cell volume on cytoplasmic free Ca (Cai) were studied in parietal cells from intact rabbit gastric glands using digital image processing of fura-2 fluorescence. In resting unstimulated cells, Cai was unaffected by either cell swelling or shrinking when osmolarity was varied between 200 and 400 mosM (isotonicity 290 mosM). However, when cells were swelled in a 165 mosM solution (55% tonicity), a biphasic Ca increased was observed. On average, Cai increased transiently from 80 to 218 nM before stabilizing at approximately 140 nM. The peak was due to release from intracellular pools because it was present in Ca-free solutions while the sustained elevation was dependent on external Ca. In carbachol-stimulated cells, Ca influx was most sensitive to cell shrinkage. For example, addition of 25 mM sucrose (108% tonicity) caused a 30% decrease in the sustained carbachol-stimulated Cai increase (plateau). In contrast, carbachol-stimulated cells were relatively insensitive to cell swelling, with a 30% decrease in tonicity causing only a 15% increase in the plateau. However, as in the unstimulated cells, extreme (55% tonicity) swelling caused additional increases in Cai levels. The carbachol-dependent effects of changes in cell volume on Cai could be mimicked by treating cells with thapsigargin, an inhibitor of Ca pumps of intracellular membranes that also has been shown to stimulate Ca entry. Thus, although extreme swelling conditions (55% tonicity) could elicit Cai increases in either the presence or absence of agonist, agonist was required to observe Cai decreases due to cell shrinkage.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 288 (3) ◽  
pp. C483-C493 ◽  
Author(s):  
David M. Cohen

SRC family kinases are a group of nine cytoplasmic protein tyrosine kinases essential for many cell functions. Some appear to be ubiquitously expressed, whereas others are highly tissue specific. The ability of members of the SRC family to influence ion transport has been recognized for several years. Mounting evidence suggests a broad role for SRC family kinases in the cell response to both hypertonic and hypotonic stress, and in the ensuing regulatory volume increase or decrease. In addition, members of this tyrosine kinase family participate in the mechanotransduction that accompanies cell membrane deformation. Finally, at least one SRC family member operates in concert with the p38 MAPK to regulate tonicity-dependent gene transcription.


Sign in / Sign up

Export Citation Format

Share Document