Characterization of anion transport system in trout red blood cell

1984 ◽  
Vol 246 (3) ◽  
pp. C330-C338 ◽  
Author(s):  
L. Romano ◽  
H. Passow

Anion transport in the trout red blood cell is mediated by a membrane protein that selectively binds dihydro-4,4'-dithiocyanostilbene-2,2'-disulfonic acid (3H2DIDS) and that forms on sodium dodecyl sulfate (SDS)-polyacrylamide gel electropherograms a band with the same diffuse structure at the same location as the band 3 protein of the mammalian red blood cells. There exists a linear relationship between binding of H2DIDS to this protein and the inhibition of anion equilibrium exchange. At maximal inhibition about 8 X 10(6) molecules/cell are bound to the protein. The kinetics of anion transport in the trout red blood cell differ from those of mammalian red blood cells. In addition to a H2DIDS-sensitive component of sulfate transport there exists a considerable H2DIDS-insensitive component with a relative magnitude that decreases with increasing temperature. At 23 degrees C, it amounts to about 25%. The temperature dependence of the H2DIDS-sensitive component is about 15 kcal/mol instead of 32 as in human red blood cells. Cl- transport increases with increasing pH. Above pH 7.4, the rate of transport becomes too fast to be measurable with either inhibitor stop or filtration technique. SO2-4 transport is nearly pH independent over the pH range 6.5 to 7.8 and the net entry of SO2-4 in exchange against intracellular Cl-, as followed in the absence of CO2, is accompanied by little if any proton uptake. Net proton uptake becomes measurable only at temperatures above 40 degrees C. Possibly at lower and more physiological temperatures, the band 3 protein in the red blood cell of the trout accomplishes part of the SO2-4 movements without cotransporting protons.

1983 ◽  
Vol 244 (1) ◽  
pp. C68-C74 ◽  
Author(s):  
F. Y. Law ◽  
R. Steinfeld ◽  
P. A. Knauf

Human K562 leukemic cells exhibit several erythroid properties, including synthesis and expression of the major red blood cell sialoglycoprotein, glycophorin. This has led us to ask if these cells express a functional anion transport system analogous to that which is associated with the other major erythrocyte glycoprotein, band 3. The chloride-36 exchange flux in K562 cells is less than 0.6% of that which would be expected in mature erythrocytes under similar conditions. Unlike red blood cells, K562 cells do not exhibit a high chloride-sulfate selectivity, and various agents that inhibit red blood cell chloride exchange are all much less effective in K562 cells. On the basis of these flux measurements, K562 cells probably contain less than 600 fully functional red blood cell-like band 3 molecules per cell, in contrast to about a million molecules in the mature red blood cell. The possible-existence of greatly altered band 3 molecules with a reduced turnover rate and/or a reduced affinity for chloride and for various inhibitors is unlikely but cannot be completely excluded. Anion transport was also measured in K562 cells that had been induced to increase hemoglobin synthesis by various chemical agents. Even under these conditions, chloride fluxes indicated no substantial increase in the number of functional anion transport sites or their chloride transport rate.


Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 2146-2151 ◽  
Author(s):  
Hani Hassoun ◽  
Toshihiko Hanada ◽  
Mohini Lutchman ◽  
Kenneth E. Sahr ◽  
Jiri Palek ◽  
...  

Abstract Glycophorin A is the major transmembrane sialoglycoprotein of red blood cells. It has been shown to contribute to the expression of the MN and Wright blood group antigens, to act as a receptor for the malaria parasite Plasmodium falciparum and Sendai virus, and along with the anion transporter, band 3, may contribute to the mechanical properties of the red blood cell membrane. Several lines of evidence suggest a close interaction between glycophorin A and band 3 during their biosynthesis. Recently, we have generated mice where the band 3 expression was completely eliminated by selective inactivation of the AE1 anion exchanger gene, thus allowing us to study the effect of band 3 on the expression of red blood cell membrane proteins. In this report, we show that the band 3 −/− red blood cells contain protein 4.1, adducin, dematin, p55, and glycophorin C. In contrast, the band 3 −/− red blood cells are completely devoid of glycophorin A (GPA), as assessed by Western blot and immunocytochemistry techniques, whereas the polymerase chain reaction (PCR) confirmed the presence of GPA mRNA. Pulse-label and pulse-chase experiments show that GPA is not incorporated in the membrane and is rapidly degraded in the cytoplasm. Based on these findings and other published evidence, we propose that band 3 plays a chaperone-like role, which is necessary for the recruitment of GPA to the red blood cell plasma membrane.


1994 ◽  
Vol 72 (2) ◽  
pp. 280-286 ◽  
Author(s):  
B. L. Tufts ◽  
R. C. Drever ◽  
B. Bagatto ◽  
B. A. Cameron

In the bowfin (Amia calva), a decrease in extracellular pH in vitro was associated with an increase in the water content and chloride concentration in the red blood cells that could be inhibited by the anion-exchange blocker, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). After a step increase in CO2 tension, the extracellular total CO2 concentration was also significantly reduced by DIDS. Finally, over most of the experimental pH range, the red blood cell pH observed in the presence of DIDS was significantly elevated compared with that of controls. Taken together, these results indicate that as in most other fishes, chloride–bicarbonate exchange is clearly present and functional in bowfin red blood cells. Moreover, within the physiological pH range, ion movements across the anion exchanger have a marked influence on both the volume and the pH of bowfin red blood cells. In sharp contrast to the rainbow trout (Oncorhynchus mykiss), catecholamines had no effect on the volume, pH, or intracellular sodium concentration of red blood cells in the bowfin. Following osmotic swelling, rainbow trout red blood cells were able to regulate their volume back to control levels within 2 h. In the bowfin, however, there was no regulation of red blood cell volume after osmotic swelling. Thus, in contrast to many other fishes examined to date, it would appear that in the bowfin, the physiological mechanisms involved in the adrenergic response and in the regulatory volume decrease after osmotic swelling may be less active or possibly even absent in the red blood cells.


Sign in / Sign up

Export Citation Format

Share Document