Voltage-dependent aminoglycoside blockade of the sarcoplasmic reticulum K+ channel

1986 ◽  
Vol 250 (3) ◽  
pp. C361-C364 ◽  
Author(s):  
Y. Oosawa ◽  
M. Sokabe

Single-channel conductance of the K+ channel from sarcoplasmic reticulum (SR) was reduced by aminoglycoside antibiotics such as neomycin and ribostamycin and also by n-hexylamine from either side of the membrane in a dose- and voltage-dependent manner. K+ channels were incorporated into an artificial phospholipid bilayer. This inhibition follows a single-site titration curve. The voltage dependence of the inhibition is explained by assuming that these drugs bind to the open state of a single channel on one site located approximately 40% of the way through the membrane from the cis side (the side to which SR vesicles are added) when drugs are added to the cis side and bind on another site located approximately 40% of the way through the membrane from the trans side (the opposite side to the cis side) when drugs are added to the trans side.

1995 ◽  
Vol 105 (2) ◽  
pp. 227-247 ◽  
Author(s):  
R T Dirksen ◽  
K G Beam

The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.


1979 ◽  
Vol 74 (4) ◽  
pp. 457-478 ◽  
Author(s):  
C Miller ◽  
R L Rosenberg

AK+ -selective membrane conductance channel from rabbit sarcoplasmic reticulum (SR) is studied in an artificial planar phospholipid bilayer. Membranes containing many such channels display voltage-dependent conductance, which is well described by a two-state conformational equilibrium with a free energy term linearly dependent on applied voltage. Pronase-derived alkaline proteinase b (APb), when added to the side of the membrane opposite to the SR vesicles (trans side), reduces the voltage dependence of the K+ conductance. Single-channel fluctuation experiments show that after APb treatment, the channel is still able to undergo transitions between its open and closed states, but that the probability of forming the open state is only slightly voltage-dependent. In terms of the conformational model, the enzyme's primary effect is to reduce the effective gating charge of the opening process by over 80%; a second effect of APb is to reduce the internal free energy of opening from +1.2 to +0.4 kcal/mol. The kinetics of APb action are strongly voltage-dependent, so as to indicate that the enzyme can react only with the channel's open state. The results imply that the channel contains a highly charged polypeptide region which moves in the direction perpendicular to the membrane plane when transitions between the open and closed states occur. A lysine or arginine residue in this region becomes exposed to the trans aqueous solution when the channel is in its open conformation.


1994 ◽  
Vol 267 (3) ◽  
pp. F489-F496 ◽  
Author(s):  
S. C. Sansom ◽  
T. Mougouris ◽  
S. Ono ◽  
T. D. DuBose

The inner medullary collecting duct (IMCD) in vivo has the capacity to either secrete or reabsorb K+. However, a selective K+ conductance has not been described previously in the IMCD. In the present study, the patch-clamp method was used to determine the presence and properties of K(+)-selective channels in the apical membrane of the inner medullary collecting duct cell line, mIMCD-3. Two types of K(+)-selective channels were observed in both cell-attached and excised patches. The most predominant K+ channel, a smaller conductance K+ channel (SK), was present in cell-attached patches with 140 mM KCl (high bath K+) but not with 135 mM NaCl plus 5 mM KCl (low bath K+) in the bathing solution. The single-channel conductance of SK was 36 pS with inward currents and 29 pS with outward currents in symmetrical 140 mM KCl. SK was insensitive to both voltage and Ca2+. However, SK was inhibited significantly by millimolar concentrations of ATP in excised patches. A second K(+)-selective channel [a larger K+ channel (BK)] displayed a single-channel conductance equal to 132 pS with inward currents and 90 pS with outward currents in symmetrical 140 mM KCl solutions. BK was intermittently activated in excised inside-out patches by Mg(2+)-ATP in concentrations from 1 to 5 mM. With complete removal of Mg2+, BK was insensitive to ATP. BK was also insensitive to potential and Ca2+ and was observed in cell-attached patches with 140 mM KCl in the bath solution. Both channels were blocked reversibly by 1 mM Ba2+ from the intracellular surface but not by external Ba2+.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (3) ◽  
pp. F476-F487 ◽  
Author(s):  
H. Sackin ◽  
L. G. Palmer

Potassium (K+) channels in the basolateral membrane of unperfused Necturus proximal tubules were studied in both cell-attached and excised patches, after removal of the tubule basement membrane by manual dissection without collagenase. Two different K+ channels were identified on the basis of their kinetics: a short open-time K+ channel, with a mean open time less than 1 ms, and a long open-time K+ channel with a mean open time greater than 20 ms. The short open-time channel occurred more frequently than the longer channel, especially in excised patches. For inside-out excised patches with Cl- replaced by gluconate, the current-voltage relation of the short open-time K+ channel was linear over +/- 60 mV, with a K+-Na+ selectivity of 12 +/- 2 (n = 12), as calculated from the reversal potential with oppositely directed Na+ and K+ gradients. With K-Ringer in the patch pipette and Na-Ringer in the bath, the conductance of the short open-time channel was 47 +/- 2 pS (n = 15) for cell-attached patches, 26 +/- 2 pS (n = 15) for patches excised (inside out) into Na-Ringer, and 36 +/- 6 pS (n = 3) for excised patches with K-Ringer on both sides. These different conductances can be partially explained by a dependence of single-channel conductance on the K+ concentration on the interior side of the membrane. In experiments with a constant K+ gradient across excised patches, large changes in Na+ at the interior side of the membrane produced no change in single-channel conductance, arguing against a direct block of the K+ channel by Na+. Finally, the activity of the short open-time channel was voltage gated, where the mean number of open channels decreased as a linear function of basolateral membrane depolarization for potentials between -60 and 0 mV. Depolarization from -60 to -40 mV decreased the mean number of open K+ channels by 28 +/- 8% (n = 6).


1992 ◽  
Vol 262 (1) ◽  
pp. C84-C90 ◽  
Author(s):  
M. Mukai ◽  
I. Kyogoku ◽  
M. Kuno

Antigenic stimulation of rat basophilic leukemia (RBL-2H3) cells, a tumor mast cell line, is associated with an increase in intracellular free Ca2+ concentrations ([Ca2+]i) and membrane polarization. We recorded whole cell and single-channel currents through the inwardly rectifying K+ channel, a major resting conductance of cells, using the patch-clamp technique, and we examined interactions between channel activity and [Ca2+]i. With 10 microM Ca2+ in the pipette, the amplitude of whole cell currents gradually declined within 5 min to 48 +/- 13% of that immediately after rupture of the patch membrane, in the presence of 1 mM ATP which minimized intrinsic rundown. In inside-out patches, activity of the channel was reduced by increasing the concentration of Ca2+ in the internal medium, both in the presence and absence of 1 mM ATP, with no apparent change in single-channel conductance. Time-averaged mean current activity in inside-out patches in the presence of 5 microM Ca2+ was less than 50% of that with Ca2+ of 100 nM or less. These results suggest that a rise in [Ca2+]i leads to a closure of the inwardly rectifying K+ channel. In some inside-out patches, inward currents characterized by burst composed of rapid transitions between open and closed states were observed (flickering currents). Single-channel properties of the flickering currents are similar to the inwardly rectifying K+ channel except for kinetics (single-channel conductance of 24.5 +/- 7.9 pS, inward rectification, and permeability to K+).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 104 (3) ◽  
pp. 425-447 ◽  
Author(s):  
A R Lindsay ◽  
A Tinker ◽  
A J Williams

Under appropriate conditions, the interaction of the plant alkaloid ryanodine with a single cardiac sarcoplasmic reticulum Ca(2+)-release channel results in a profound modification of both channel gating and conduction. On modification, the channel undergoes a dramatic increase in open probability and a change in single-channel conductance. In this paper we aim to provide a mechanistic framework for the interpretation of the altered conductance seen after ryanodine binding to the channel protein. To do this we have characterized single-channel conductance with representative members of three classes of permeant cation; group 1a monovalent cations, alkaline earth divalent cations, and organic monovalent cations. We have quantified the change in single-channel conductance induced by ryanodine and have expressed this as a fraction of conductance in the absence of ryanodine. Fractional conductance seen in symmetrical 210 mM solutions is not fixed but varies with the nature of the permeant cation. The group 1a monovalent cations (K+, Na+, Cs+, Li+) have values of fractional conductance in a narrow range (0.60-0.66). With divalent cations fractional conductance is considerably lower (Ba2+, 0.22 and Sr2+, 0.28), whereas values of fractional conductance vary considerably with the organic monovalent cations (ammonia 0.66, ethylamine 0.76, propanolamine 0.65, diethanolamine 0.92, diethylamine 1.2). To establish the mechanisms governing these differences, we have monitored the affinity of the conduction pathway for, and the relative permeability of, representative cations in the ryanodine-modified channel. These parameters have been compared with those obtained in previous studies from this laboratory using the channel in the absence of ryanodine and have been modeled by modifying our existing single-ion, four-barrier three-well rate theory model of conduction in the unmodified channel. Our findings indicate that the high affinity, essentially irreversible, interaction of ryanodine with the cardiac sarcoplasmic reticulum Ca(2+)-release channel produces a conformational alteration of the protein which results in modified ion handling. We suggest that, on modification, the affinity of the channel for the group 1a monovalent cations is increased while the relative permeability of this class of cations remains essentially unaltered. The affinity of the conduction pathway for the alkaline earth divalent cations is also increased, however the relative permeability of this class of cations is reduced compared to the unmodified channel. The influence of modification on the handling by the channel of the organic monovalent cations is determined by both the size and the nature of the cation.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 65 (4) ◽  
pp. 568-573 ◽  
Author(s):  
C. L. Schauf

Time- and voltage-dependent behavior of the Na+ conductance in dialyzed intact Myxicola axons was compared with cut-open axons subjected to loose-patch clamp of the interior and to axons where Gigaseals were formed after brief enzyme digestion. Voltage and time dependence of activation, inactivation, and reactivation were identical in whole-axons and loose-patch preparations. Single channels observed in patch-clamp axons had a conductance of 18.3 ± 2.3 pS and a mean open time of 0.84 ± 0.12 ms. The time-dependence of Na+ currents found by averaging patch-clamp records was similar to intact axons, as was the voltage dependence of activation. Steady-state inactivation in patch-clamped axons was shifted by an average of 15 mV from that seen in loose-patch or intact axons. Substitution of D2O for H2O decreased single channel conductance by 24 ± 6% in patch-clamped axons compared with 28 ± 4% in intact axons, slowed inactivation by 58 ± 8% compared with 49 ± 6%, and increased mean open time by 52 ± 7%. The results confirm observations on macroscopic channel behavior in Myxicola and resemble that seen in other excitable tissues.


Sign in / Sign up

Export Citation Format

Share Document