selective membrane
Recently Published Documents


TOTAL DOCUMENTS

899
(FIVE YEARS 140)

H-INDEX

60
(FIVE YEARS 8)

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 959
Author(s):  
Chunxian Liao ◽  
Lijie Zhong ◽  
Yitian Tang ◽  
Zhonghui Sun ◽  
Kanglong Lin ◽  
...  

Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative. In this work, we first compared the two types of SC-ISEs of Cl− with/without the ISM. It is found that the ISM-free Ag/AgCl electrode discloses a comparable selectivity regarding organic chloride ionophores. Additionally, the electrode exhibits better comprehensive performances (stability, reproducibility, and anti-interference ability) than the ISM-based SC-ISE. In addition to Cl−, other Ag/AgX electrodes also work toward single and multi-valent anions sensing. Finally, a flexible Cl− sensor was fabricated for on-body monitoring the concentration of sweat Cl− to illustrate a proof-of-concept application in wearable anion sensors. This work re-emphasizes the ISM-free SC-ISEs for solid anion sensing.


2021 ◽  
Vol 640 ◽  
pp. 119801
Author(s):  
Kecheng Guan ◽  
Yuji Sasaki ◽  
Yuandong Jia ◽  
Ralph Rolly Gonzales ◽  
Pengfei Zhang ◽  
...  

2021 ◽  
pp. 131305
Author(s):  
Rohit Mishra ◽  
Rizwan Alam ◽  
Darren McAuley ◽  
Tirinder Bharaj ◽  
Danielle Chung ◽  
...  
Keyword(s):  

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 898
Author(s):  
Marcin Urbanowicz ◽  
Kamila Sadowska ◽  
Agnieszka Paziewska-Nowak ◽  
Anna Sołdatowska ◽  
Dorota G. Pijanowska

There is growing interest for bioanalytical tools that might be designed for a specific user, primarily for research purposes. In this perspective, a new, highly stable potentiometric sensor based on glassy carbon/polyazulene/NH4+-selective membrane was developed and utilized for urease activity determination. Urease–urea interaction studies were carried out and the Michaelis–Menten constant was established for this enzymatic reaction. Biofunctionalization of the ammonium ion-selective sensor with urease lead to urea biosensor with remarkably good potential stability (drift coefficient ~0.9 mV/h) and short response time (t95% = 36 s). The prepared biosensor showed the Nernstian response (S = 52.4 ± 0.7 mV/dec) in the urea concentration range from 0.01 to 20 mM, stable for the experimental time of 60 days. In addition, some insights into electrical properties of the ion-to-electron transducing layer resulting from impedance spectroscopy measurements are presented. Based on the RCQ equivalent circuits comparison, it can be drawn that the polyazulene (PAz) layer shows the least capacitive behavior, which might result in good time stability of the sensor in respect to response as well as potential E0. Both the polyazulene-based solid-contact ion selective electrodes and urea biosensors were successfully used in trial studies for determination of ammonium ion and urea in human saliva samples. The accuracy of ammonium ion and urea levels determination by potentiometric method was confirmed by two reference spectrophotometric methods.


Author(s):  
Karolina Pietrzak ◽  
Cecylia Wardak ◽  
Szymon Malinowski

AbstractThe application of polyaniline nanofibers doped with chloride and nitrate ions (PANINFs-Cl and PANINFs-NO3) in potentiometry was described. Both kinds of nanofibers were used as an ion-to-electron transducer in ion-selective electrodes with solid contact (SCISEs). Extensive research on the properties of the nanofibers themselves (SEM, UV–Vis spectroscopy, FTIR) and the constructed electrodes (potentiometric methods, electrochemical impedance spectroscopy) has been carried out. Basic analytical parameters of electrodes containing various nanofibers contents in the ion-selective membrane and with nanofibers as an intermediate layer were determined. It was found that application of PANI nanofibers resulted in improvement of electrode performance (among others, better stability and reversibility of the electrode potential). The obtained sensors were characterized by a high slope of the calibration curve, a wide measuring range and a fast response time. Moreover, they were insensitive to change of redox potential, as well as light and the presence of oxygen in the solution, what is important from a practical point of view. They were also successfully used for nitrate determination in real environmental samples.


2021 ◽  
Vol 19 (10) ◽  
pp. 121-126
Author(s):  
Seemma Hamed Ahmed ◽  
Mumin Fareed Hamad Al-Samarrai ◽  
Imad Tarek Hanoon ◽  
Afrah Saad Salih

The research aims to prepare a new ionic membrane selective electrode for NYM Neomycin based on tungstophosphoric acid (TPA), Poly Vinyl Chloride (PVC) and DPPH (Di-Butyl Phthalate). It was found that the electrode is sensitive to concentrations ranging between (1 x 10-1-1 x 10-5) mol/L, and it gave a Nernstian response of (29.7 mV/decade) and a correlation coefficient (r) of (0.9939). The factors affecting the response of the electrode were studied, as it was found that the best concentration of the internal filling solution was (1 x 10-3) mol/L, and that the best pH range in which the electrode worked was between (3.5-1.5) and the best Nernstian response at pH (pH = 2.5) The effect of temperature was also studied, as it was found that the best temperature was (25°C) and the response time of the electrode was between (20-40) seconds. It was also found that the chronological age of the electrode was (25) days. The selectivity coefficient (Ki,jpot) was calculated in the presence of negative and positively charged interfering ions.


ACS Omega ◽  
2021 ◽  
Author(s):  
Nowzesh Hasan ◽  
Urna Kansakar ◽  
Eric Sherer ◽  
Mark A. DeCoster ◽  
Adarsh D. Radadia

Author(s):  
Dennis Cherian ◽  
Samuel Lienemann ◽  
Tobias Abrahamsson ◽  
Nara Kim ◽  
Magnus Berggren ◽  
...  

Abstract Implantable electronically controlled drug delivery devices can provide precision theraputic treatments by highly spatiotemporally controlled delivery. Iontronic delivery devices rely on the movement of ions rather than liquid, and can therefore achieve electronically controlled precision delivery in a compact setting without disturbing the microenvironment within the tissue with fluid flow. For maximum precision, the delivery device needs to be closely integrated into the tissue, which is challenging due to the mechanical mismatch between the soft tissue and the harder devices. Here we address this challenge by developing a soft and stretchable iontronic delivery device. By formulating an ink based on an in-house synthesized hyperbranched polyelectrolyte, water dispersed polyurethane, and a thickening agent, a viscous ink is developed for stencil patterning of soft ion exchange membranes. We use this ink for developing soft and stretchable delivery devices, which are characterized both in the relaxed and stretched state. We find that their functionality is preserved up to 100 % strain, with small variations in resistance due to the strain. Finally, we develop a skin patch to demonstrate the outstanding conformability of the developed device. The presented technology is attractive for future soft implantable delivery devices, and the stretchable ion exchange membranes may also find applications within wearable energy devices.


Sign in / Sign up

Export Citation Format

Share Document