Neuraminidase selectively enhances transient Ca2+ current in cardiac myocytes

1989 ◽  
Vol 256 (6) ◽  
pp. C1267-C1272 ◽  
Author(s):  
H. F. Yee ◽  
J. N. Weiss ◽  
G. A. Langer

Sialic acid, an anionic sugar moiety found peripherally on membrane glycoconjugates, is specifically hydrolyzed from the cell surface by neuraminidase. Because neuraminidase has previously been demonstrated to augment myocardial cell calcium content, the effects of neuraminidase on Ca channel function were studied on voltage-clamped guinea pig ventricular myocytes. In 25-50% of cells, neuraminidase treatment (0.12 U/ml for 20 min) enhanced current through the transient (T) Ca channel by 304 +/- 35% without significantly altering the magnitude of the long-lasting (L) Ca channel current. Exposure to neuraminidase did not affect the voltage dependence of activation or inactivation, nor did it affect the selective inhibition of the T-channel current by amiloride or the L-channel current by nifedipine. After neuraminidase treatment, the T-channel current inactivated more rapidly (time constant decreasing from 8.9 +/- 0.9 to 7.7 +/- 0.6 ms), whereas there was no change in the rate of inactivation of the L-channel current. Neuraminidase treatment removed approximately 20% of the total cellular sialic acid. These results indicate that neuraminidase treatment selectively modulates the function of the T Ca channel in ventricular myocytes, possibly through removal of sarcolemmal sialic acid, suggesting that glycosylation of membrane macromolecules may influence membrane function.

2011 ◽  
Vol 301 (4) ◽  
pp. H1606-H1614 ◽  
Author(s):  
Andrew C. Zygmunt ◽  
Vladislav V. Nesterenko ◽  
Sridharan Rajamani ◽  
Dan Hu ◽  
Hector Barajas-Martinez ◽  
...  

Atrial-selective inhibition of cardiac Na+ channel current ( INa) and INa-dependent parameters has been shown to contribute to the safe and effective management of atrial fibrillation. The present study examined the basis for the atrial-selective actions of ranolazine. Whole cell INa was recorded at 15°C in canine atrial and ventricular myocytes and in human embryonic kidney (HEK)-293 cells expressing SCN5A. Tonic block was negligible at holding potentials from −140 to −100 mV, suggesting minimal drug interactions with the closed state. Trains of 40 pulses were elicited over a range of holding potentials to determine use-dependent block. Guarded receptor formalism was used to analyze the development of block during pulse trains. Use-dependent block by ranolazine increased at more depolarized holding potentials, consistent with an interaction of the drug with either preopen or inactivated states, but was unaffected by longer pulse durations between 5 and 200 ms, suggesting a weak interaction with the inactivated state. Block was significantly increased at shorter diastolic intervals between 20 and 200 ms. Responses in atrial and ventricular myocytes and in HEK-293 cells displayed a similar pattern. Ranolazine is an open state blocker that unbinds from closed Na+ channels unusually fast but is trapped in the inactivated state. Kinetic rates of ranolazine interactions with different states of atrial and ventricular Na+ channels were similar. Our data suggest that the atrial selectivity of ranolazine is due to a more negative steady-state inactivation curve, less negative resting membrane potential, and shorter diastolic intervals in atrial cells compared with ventricular cells at rapid rates.


1992 ◽  
Vol 263 (1) ◽  
pp. H147-H152 ◽  
Author(s):  
J. A. Post

Treatment of neonatal rat heart cells with neuraminidase results in a large increase of cellular-associated Ca2+. The study described below was designed to test the hypothesis that neuraminidase produces its effects by increasing the transient Ca2+ channel current, as proposed by Yee et al. (24). This ICa,T can be inactivated by dodecylsulfate (DDS) (17). The experimental data show that 1) the increase in cellular Ca2+ during neuraminidase treatment cannot be explained by an increased ICa,T; 2) neuraminidase treatment has a much more profound effect on sarcolemmal permeability than has been recognized previously; and 3) the effect of neuraminidase treatment can be prevented by 50 microM DDS. The study indicates that glycocalyx-lipid bilayer interactions are important in maintenance of selective permeability of the sarcolemma. The protective effect of 50 microM DDS is probably mediated by insertion of the negatively charged amphiphilic molecule in the sarcolemma, although the exact mechanism remains to be elucidated.


1997 ◽  
Vol 272 (5) ◽  
pp. H2164-H2172 ◽  
Author(s):  
I. A. Hobai ◽  
J. A. Bates ◽  
F. C. Howarth ◽  
A. J. Levi

We investigated the effect of external Cd2+ on the Na/Ca exchange and the L-type Ca channel current (ICa,L) in whole cell patch-clamped rabbit ventricular myocytes at 36 degrees C. After the interfering ion channels and the Na/K pump were blocked, the exchange current was measured as the membrane current that was inhibited by 5 mM nickel. External Cd2+ inhibited Na/Ca exchange with a dissociation constant (KD) of 320.6 +/- 12.4 microM and a Hill coefficient of 1.5 +/- 0.09 (n = 13 cells) and ICa,L with a KD of 2.14 +/- 0.15 microM and a Hill coefficient of 0.74 +/- 0.03 (n = 11 cells). We observed some overlap in the Cd2+ concentration that blocked each mechanism. Cd2+ (100-500 microM) is used commonly to block ICa,L completely. However, 100 microM Cd2+ also inhibits 20% of the Na/Ca exchange activity, whereas 500 microM Cd2+ inhibits 60%.


1989 ◽  
Vol 413 (6) ◽  
pp. 685-687 ◽  
Author(s):  
Renzo C. Levi ◽  
Giuseppe Alloatti ◽  
Rodolphe Fischmeister

1996 ◽  
Vol 270 (2) ◽  
pp. H620-H627 ◽  
Author(s):  
T. Asai ◽  
L. M. Shuba ◽  
D. J. Pelzer ◽  
T. F. McDonald

Active and inactive phorbol esters were applied to guinea pig ventricular myocytes to study the responses of L-type Ca2+ (ICa,L) and L-type Na+ (INa,L) currents. Phorbol 12-myristate 13-acetate (PMA) (10-100 rM) never stimulated ICa,L or INa,L and frequently depressed them by 5-30% in a voltage-independent manner. However, the phorbol ester consistently activated delayed-rectifying K+ (IK) and Cl- currents. The inhibition of ICa,L occurred approximately 3 times faster than comonitored stimulation of IK, and ICa,L and INa,L were unaffected by two interventions that suppressed IK stimulation [pretreatment with 50 microM 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and dialysis with pCa 11 versus standard pCa 9 solution]. Inactive phorbol esters 4 alpha-phorbol 12,13-didecanoate (alpha-PDD) and 4 alpha-phorbol had little effect on IK, but alpha-PDD had a PMA-like inhibitory effect on Ca2+ channel currents. We conclude that, unlike the stimulation of IK by PMA, inhibition of Ca2+ channel current by phorbol esters is a protein kinase C-independent action.


1992 ◽  
Vol 263 (4) ◽  
pp. H1161-H1169 ◽  
Author(s):  
H. B. Nuss ◽  
S. R. Houser

The hypothesis that Ca entry by the sarcolemmal Na-Ca exchange mechanism induces sarcoplasmic reticulum (SR) Ca release, loads the SR with Ca, and/or directly induces contractions by elevating cytosolic free Ca was tested in voltage-clamped feline ventricular myocytes. Intracellular Na concentration was increased by cellular dialysis to enhance Ca influx via "reverse-mode" Na-Ca exchange at positive membrane potentials, at which the "L-type" Ca current (ICa) should be small. Contractions were induced in the presence of Ca channel antagonists by depolarization to these potentials, suggesting that Ca influx via reverse-mode Na-Ca exchange was involved. These contractions had both phasic (SR related) and tonic components of shortening. They were smaller and began with more delay after depolarization than contractions which involved ICa. The magnitude of shortening was graded by the amount and duration of depolarization, suggesting that Ca influx via reverse-mode Na-Ca exchange has the capacity to induce and grade SR Ca release. Small slow contractions could be evoked in the presence of ryanodine (to impair SR function) and verapamil (to block ICa), supporting the idea that Ca influx via Na-Ca exchange is sufficient to directly activate the contractile proteins. Contractions induced by voltage steps to +10 mV, which were usually small when ICa was blocked, were potentiated if preceded by a voltage step to strongly positive potentials. This potentiation was inhibited by ryanodine, suggesting that Ca entry that occurs by Na-Ca exchange may be important for normal SR Ca loading.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 281 (2) ◽  
pp. C464-C474 ◽  
Author(s):  
Carmen A. Ufret-Vincenty ◽  
Deborah J. Baro ◽  
L. F. Santana

We investigated the contribution of sialic acid residues to the K+ currents involved in the repolarization of mouse ventricular myocytes. Ventricular K+ currents had a rapidly inactivating component followed by slowly decaying and sustained components. This current was produced by the summation of three distinct currents: I to, which contributed to the transient component; I ss, which contributed to the sustained component; and I K,slow, which contributed to both components. Incubation of ventricular myocytes with the sialidase neuraminidase reduced the amplitude of I to without altering I K,slow and I ss. We found that the reduction in I to amplitude resulted from a depolarizing shift in the voltage of activation and a reduction in the conductance of I to. Expression of Kv4.3 channels, a major contributor to I to in the ventricle, in a sialylation-deficient Chinese hamster ovary cell line (lec2) mimicked the effects of neuraminidase on the ventricular I to. Furthermore, we showed that sialylated glycolipids have little effect on the voltage dependence of I to. Finally, consistent with its actions on I to, neuraminidase produced an increase in the duration of the action potential of ventricular myocytes and the frequency of early afterdepolarizations. We conclude that sialylation of the proteins forming Kv4 channels is important in determining the voltage dependence and conductance of I to and that incomplete glycosylation of these channels could lead to arrhythmias.


1976 ◽  
Vol 156 (1) ◽  
pp. 143-150 ◽  
Author(s):  
R H Quarles

Rats (14 days old) were injected with [14c]fucose and young adult rats with [3H]fucose in order to label the myelin-associated glycoproteins. As previously reported, the major [14C]fucose-labelled glycoprotein in the immature myelin had a higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide gels that the [3H]fucose-labelled glycoprotein in mature myelin. This predominant doubly labelled glycoprotein component was partially purified by preparative gel electrophoresis and converted to glycopeptides by extensive Pronase digestion. Gel filtration on Sephadex G-50 separated the glycopeptides into several clases, which were designted A,B, C AND D, from high to low molecular weight. The 14C-labelled glycopeptides from immature myeline were enriched in the highest-molecular-weight class A relative to the 3H-labelled glycopeptides from mature myelin. Neuraminidase treatment of the glycoprotein before Pronase digestion greatly decreased the proportion of glycopeptides fractionating in the higher-molecular-weight classes and largely eliminated the developmental differences that were apparent by gel filtration. However, neuraminidase treatment did not decrease the magnitude of the developmental difference revealed by electrophoresing the intact glycoprotein on sodium dodecyl sulphate gels, although it did decrease the apparent molecular weight of the glycoprotein from both the 15-day-old and adult rats by an amount comparable in magnitude to that developmental difference. The results from gel filtration of glycopeptides indicate that there is a higher content of large molecular weight, sialic acid-rich oligosaccharide units in the glycoprotein of immature myelin. However, the higher apparent molecular weight for the glycoprotein from 15-day-old rats on sodium dodcyl sulphate gels is not due primarily to its higher sialic acid content.


2004 ◽  
Vol 78 (15) ◽  
pp. 8094-8101 ◽  
Author(s):  
Peter L. Delputte ◽  
Hans J. Nauwynck

ABSTRACT Recently, we showed that porcine sialoadhesin (pSn) mediates internalization of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) in alveolar macrophages (Vanderheijden et al., J. Virol. 77:8207-8215, 2003). In rodents and humans, sialoadhesin, or Siglec-1, has been described as a macrophage-restricted molecule and to specifically bind sialic acid moieties. In the current study, we investigated whether pSn is a sialic acid binding protein and, whether so, whether this property is important for its function as a PRRSV receptor. Using untreated and neuraminidase-treated sheep erythrocytes, we showed that pSn binds sialic acid. Furthermore, pSn-specific monoclonal antibody 41D3, which blocks PRRSV infection, inhibited this interaction. PRRSV attachment to and infection of porcine alveolar macrophages (PAM) were both shown to be dependent on the presence of sialic acid on the virus: neuraminidase treatment of virus but not of PAM blocked infection and reduced attachment. Enzymatic removal of all N-linked glycans on the virus with N-glycosidase F reduced PRRSV infection, while exclusive removal of nonsialylated N-linked glycans of the high-mannose type with endoglycosidase H had no significant effect. Free sialyllactose and sialic acid containing (neo)glycoproteins reduced infection, while lactose and (neo)glycoproteins devoid of sialic acids had no significant effect. Studies with linkage-specific neuraminidases and lectins indicated that α2-3- and α2-6-linked sialic acids on the virion are important for PRRSV infection of PAM. From these results, we conclude that pSn is a sialic acid binding lectin and that interactions between sialic acid on the PRRS virion and pSn are essential for PRRSV infection of PAM.


Sign in / Sign up

Export Citation Format

Share Document