Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries

1993 ◽  
Vol 265 (5) ◽  
pp. C1363-C1370 ◽  
Author(s):  
J. M. Quayle ◽  
J. G. McCarron ◽  
J. E. Brayden ◽  
M. T. Nelson

Inward rectifier K+ channels have been implicated in the control of membrane potential and external K(+)-induced dilations of small cerebral arteries. In the present study, whole cell K+ currents through the inward rectifier K+ channel were measured in single smooth muscle cells isolated from the posterior cerebral artery of Wistar-Kyoto rats. The whole cell K+ current-voltage relationship showed inward rectification. Inward currents were recorded negative to the K+ equilibrium potential, whereas outward currents were small. When extracellular K+ was elevated, the zero current potential shifted to the new K+ equilibrium potential, and the conductance of the inward current increased. Inward currents were reduced by external barium or cesium. Inhibition by barium and cesium increased with membrane hyperpolarization. The half-inhibition constant for barium was 2.2 microM at -60 mV, increasing e-fold for a 23-mV depolarization. We provide the first direct measurements of inward rectifier K+ currents in single smooth muscle cells and show that external barium ions are effective blockers of these currents.

1996 ◽  
Vol 271 (2) ◽  
pp. H696-H705 ◽  
Author(s):  
B. E. Robertson ◽  
A. D. Bonev ◽  
M. T. Nelson

Inward rectifier K+ channels have been implicated in the control of membrane potential and external K(+)-induced dilations of small coronary arteries. To identify and characterize inward rectifier K+ currents in coronary artery smooth muscle, whole cell K+ currents in smooth muscle cells enzymatically isolated from rat coronary (septal) arteries (diameters, 100-150 microns) were measured in the conventional and perforated configurations of the patch-clamp technique. Ba(2+)-sensitive, whole cell K+ current-voltage relationships exhibited inward rectification. Blockers of Ca(2+)-activated K+ channels (1 mM tetraethylammonium ion), ATP-sensitive K+ channels (10 microM glibenclamide), and voltage-dependent K+ channels (1 mM 4-aminopyridine) in smooth muscle did not affect inward rectifier K+ currents. The nonselective K+ channel inhibitor phencyclidine (100 microM) reduced inward rectifier K+ currents by approximately 50%. External Ba2+ reduced inward currents, with membrane potential hyperpolarization increasing inhibition. The half-inhibition constant for Ba2+ was 2.1 microM at -60 mV, decreasing e-fold for a 25-mV hyperpolarization. External Cs+ also blocked inward rectifier K+ currents, with the half-inhibition constant for Cs+ of 2.9 mM at -60 mV. External Ca2+ and Mg2+ reduced inward rectifier K+ currents. At -60 mV, Ca2+ and Mg2+ (1 mM) reduced inward currents by 33 and 21%, respectively. Inward rectification was not affected by dialysis of the cell's interior with a nominally Ca(2+)- and Mg(2+)-free solution. These findings indicate that inward rectifier K+ channels exist in coronary artery smooth muscle and that Ba2+ may be a useful probe for the functional role of inward rectifier K+ channels in coronary arteries.


1990 ◽  
Vol 258 (5) ◽  
pp. G794-G802 ◽  
Author(s):  
S. M. Sims ◽  
M. B. Vivaudou ◽  
C. Hillemeier ◽  
P. Biancani ◽  
J. V. Walsh ◽  
...  

The tight-seal whole cell recording technique with patch pipettes was used to study membrane currents of smooth muscle cells freshly dissociated from the esophagus of cats. Under voltage clamp with K+ in the pipette, depolarizing commands elicited an initial inward current followed by a transient outward current that peaked and then declined to reveal spontaneous outward currents (SOCs). SOCs were evident at -60 mV and more positive potentials. The reversal of SOCs at the K+ equilibrium potential and their suppression by tetraethylammonium chloride lead to the conclusion that they represent the activity of K+ channels. Acetylcholine (ACh) caused reversible contraction of these cells and had two successive effects on membrane currents, causing transient activation of K+ current followed by suppression of SOCs. Both of these effects were blocked by atropine. Consistent with these observations, in current clamp, ACh caused a transient hyperpolarization followed by depolarization. The inward current activated by depolarization was blocked by external Cd2+, consistent with the inward current being a voltage-activated calcium current. Two types of Ca2+ current could be distinguished on the basis of voltage-activation range, time course of inactivation and "run-down" during whole cell recording.


2000 ◽  
Vol 279 (6) ◽  
pp. G1155-G1161 ◽  
Author(s):  
Adrian N. Holm ◽  
Adam Rich ◽  
Michael G. Sarr ◽  
Gianrico Farrugia

Mechanotransduction is required for a wide variety of biological functions. The aim of this study was to determine the effect of activation of a mechanosensitive Ca2+ channel, present in human jejunal circular smooth muscle cells, on whole cell currents and on membrane potential. Currents were recorded using patch-clamp techniques, and perfusion of the bath (10 ml/min, 30 s) was used to mechanoactivate the L-type Ca2+ channel. Perfusion resulted in activation of L-type Ca2+ channels and an increase in outward current from 664 ± 57 to 773 ± 72 pA at +60 mV. Membrane potential hyperpolarized from −42 ± 4 to −50 ± 5 mV. In the presence of nifedipine (10 μM), there was no increase in outward current or change in membrane potential with perfusion. In the presence of charybdotoxin or iberiotoxin, perfusion of the bath did not increase outward current or change membrane potential. A model is proposed in which mechanoactivation of an L-type Ca2+ channel current in human jejunal circular smooth muscle cells results in increased Ca2+ entry and cell contraction. Ca2+ entry activates large-conductance Ca2+-activated K+channels, resulting in membrane hyperpolarization and relaxation.


2010 ◽  
Vol 298 (5) ◽  
pp. C1198-C1208 ◽  
Author(s):  
Wen-Shuo Chung ◽  
Jerry M. Farley ◽  
Alyssa Swenson ◽  
John M. Barnard ◽  
Gina Hamilton ◽  
...  

Recent studies suggest that certain acid-sensing ion channels (ASIC) are expressed in vascular smooth muscle cells (VSMCs) and are required for VSMC functions. However, electrophysiological evidence of ASIC channels in VSMCs is lacking. The purpose of this study was to test the hypothesis that isolated cerebral artery VSMCs express ASIC-like channels. To address this hypothesis, we used RT-PCR, Western blotting, immunolabeling, and conventional whole cell patch-clamp technique. We found extracellular H+-induced inward currents in 46% of cells tested ( n = 58 of 126 VSMCs, pH 6.5–5.0). The percentage of responsive cells and the current amplitude increased as the external H+ concentration increased (pH6.0, n = 28/65 VSMCs responsive, mean current density = 8.1 ± 1.2 pA/pF). Extracellular acidosis (pH6.0) shifted the whole cell reversal potential toward the Nernst potential of Na+ ( n = 6) and substitution of extracellular Na+ by N-methyl-d-glucamine abolished the inward current ( n = 6), indicating that Na+ is a major charge carrier. The broad-spectrum ASIC blocker amiloride (20 μM) inhibited proton-induced currents to 16.5 ± 8.7% of control ( n = 6, pH6.0). Psalmotoxin 1 (PcTx1), an ASIC1a inhibitor and ASIC1b activator, had mixed effects: PcTx1 either 1) abolished H+-induced currents (11% of VSMCs, 5/45), 2) enhanced or promoted activation of H+-induced currents (76%, 34/45), or 3) failed to promote H+ activation in nonresponsive VSMCs (13%, 6/45). These findings suggest that freshly dissociated cerebral artery VSMCs express ASIC-like channels, which are predominantly formed by ASIC1b.


1996 ◽  
Vol 107 (4) ◽  
pp. 459-472 ◽  
Author(s):  
M Rubart ◽  
J B Patlak ◽  
M T Nelson

Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4-10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.


1995 ◽  
Vol 269 (6) ◽  
pp. L776-L782 ◽  
Author(s):  
M. Yamakage ◽  
C. A. Hirshman ◽  
T. L. Croxton

To investigate cholinergic regulation of voltage-dependent Ca2+ channels (VDCs) in airway smooth muscle, we measured inward currents through VDCs in enzymatically dispersed porcine tracheal smooth muscle cells using conventional (10 mM Ca2+ as charge carrier) and nystatin-perforated (5 mM Ba2+ as charge carrier) whole cell patch clamp techniques. Carbachol (CCh) had significant and dose-dependent inhibitory effects on inward currents (12% with 10(-7) M and 42% with 10(-6) M) in perforated whole cell clamp experiments, but had no effect on currents in conventional whole cell experiments. CCh also shifted the steady-state inactivation curve to more negative potentials. Further experiments tested the hypothesis that CCh inhibits VDCs in part by the activation of protein kinase C (PKC). Phorbol 12,13-diacetate, an exogenous PKC activator, inhibited currents through VDCs. and calphostin C, a specific PKC inhibitor, antagonized the inhibitory effect of CCh. Furthermore, intracellular exposure to the activating PKC fragment 530-558, using a pipette perfusion technique, also inhibited currents through VDCs. We conclude that cholinergic receptor stimulation can inhibit inward Ca2+ currents through VDCs of porcine tracheal smooth muscle and that this effect may be mediated in part by activation of PKC.


2011 ◽  
Vol 301 (4) ◽  
pp. H1378-H1388 ◽  
Author(s):  
Yana Anfinogenova ◽  
Suzanne E. Brett ◽  
Michael P. Walsh ◽  
Osama F. Harraz ◽  
Donald G. Welsh

The objective of this study was to determine whether Gq/11-coupled receptor activation can enhance the mechanosensitivity of a canonical transient receptor potential (TRPC)-like current and consequently the myogenic responsiveness of rat anterior cerebral arteries. Initial patch-clamp experiments revealed the presence of a basal cation current in isolated smooth muscle cells that displayed evidence of double rectification, which was blocked by trivalent cations (Gd3+ and La3+). PCR analysis identified the expression of TRPC1, 3, 6 and 7 mRNA and, characteristic of TRPC-like current, the whole-cell conductance was insensitive to a Na+-dependent transport (amiloride), TRP vanilloid (ruthenium red), and chloride channel (DIDS, niflumic acid, and flufenamate) inhibitors. One notable exception was tamoxifen, which elicited a dual effect, blocking or activating the TRPC-like current at 1 and 10 μM, respectively. This TRPC-like current was augmented by constrictor agonists (uridine 5′-triphosphate and U46619) or hyposmotic challenge (303 to 223 mOsm/l), a mechanical stimulus. Although each stimulus was effective alone, smooth muscle cells pretreated with agonist did not augment the whole-cell response to hyposmotic challenge. Consistent with these electrophysiological recordings, functional experiments revealed that neither UTP nor U46619 enhanced the sensitivity of intact cerebral arteries to hyposmotic challenge or elevated intravascular pressure. In summary, this study found no evidence that Gq/11-coupled receptor activation augments the mechanosensitivity of a TRPC-like current and consequently the myogenic responsiveness of anterior cerebral arteries.


Sign in / Sign up

Export Citation Format

Share Document