Troponin I isoforms and differential effects of acidic pH on soleus and cardiac myofilaments

1995 ◽  
Vol 268 (2) ◽  
pp. C323-C330 ◽  
Author(s):  
J. Wattanapermpool ◽  
P. J. Reiser ◽  
R. J. Solaro

Differences in pH sensitivity of tension generation between developing and adult cardiac myofilaments, which contain the same isoform of troponin C (TnC), have been proposed to be due to troponin I (TnI) isoform switching from the slow skeletal (ss) to cardiac (c) TnI isoforms (21). We investigated the effects of acidic pH on Ca(2+)-activation of force in chemically skinned preparations of adult rat trabeculae and single soleus fibers that also share the same TnC isoform. Compared with the soleus fibers, trabeculae demonstrated a greater suppression of tension and a rightward shift in pCa50 (-log half-maximally activating molar Ca2+ concentration) when pH was decreased from 7.0 to 6.2. The pH-induced shift in pCa50 in soleus fibers did not change with sarcomere length. Troponin subunit interactions were also investigated, using cardiac troponin C (cTnCIA) labeled with a fluorescent probe, 2-(4'-iodoacetamidoanilino)-naphthalene-6-sulfonic acid. Under acidic conditions, cTnCIA demonstrated a decrease in Ca(2+)-affinity. This decrease was amplified both in the binary complex cTnCIA-cTnI and in the complex cTnCIA-cTnI-cTnT-tropomyosin to the same extent. In contrast, substitution of ssTnI for cTnI in these complexes produced the same decrease in Ca2+ affinity in response to acidic pH as cTnCIA alone. These results support our hypothesis that differential effects of pH on tension generation and Ca2+ sensitivity between soleus fibers and trabeculae are due to the presence of different isoforms of TnI.

Biochemistry ◽  
1995 ◽  
Vol 34 (7) ◽  
pp. 2309-2316 ◽  
Author(s):  
Xiao-Ling Ding ◽  
Arvind Babu Akella ◽  
Jagdish Gulati
Keyword(s):  

1978 ◽  
Vol 253 (15) ◽  
pp. 5452-5459
Author(s):  
P.C. Leavis ◽  
S.S. Rosenfeld ◽  
J. Gergely ◽  
Z. Grabarek ◽  
W. Drabikowski

2020 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Kenji Tsukigawa ◽  
Shuhei Imoto ◽  
Keishi Yamasaki ◽  
Koji Nishi ◽  
Toshihiko Tsutsumi ◽  
...  

In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected adverse effects. Human serum albumin (HSA), which has a high biocompatibility and good biodegradability, is also a potent carrier for delivering antitumor drugs. The objective of this study was to develop pH-sensitive HSA conjugates of THP (HSA-THP), and investigate the release of THP and the cytotoxicity under acidic conditions in vitro for further clinical development. HSA-THP was synthesized by conjugating maleimide hydrazone derivatives of THP with poly-thiolated HSA using 2-iminothiolane, via a thiol-maleimide coupling reaction. We synthesized two types of HSA-THP that contained different amounts of THP (HSA-THP2 and HSA-THP4). Free THP was released from both of the HSA conjugates more rapidly at an acidic pH, and the rates of release for HSA-THP2 and HSA-THP4 were similar. Moreover, both HSA-THPs exhibited a higher cytotoxicity at acidic pH than at neutral pH, which is consistent with the effective liberation of free THP under acidic conditions. These findings suggest that these types of HSA-THPs are promising candidates for further development.


Sign in / Sign up

Export Citation Format

Share Document