polymer conjugate
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 35)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
pp. 2107852
Author(s):  
Imran Ozer ◽  
George A. Pitoc ◽  
Juliana M. Layzer ◽  
Angelo Moreno ◽  
Lyra B. Olson ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 241
Author(s):  
Alina Elena Sandu ◽  
Loredana Elena Nita ◽  
Aurica P. Chiriac ◽  
Nita Tudorachi ◽  
Alina Gabriela Rusu ◽  
...  

This study reports a strategy for developing a biohybrid complex based on a natural/synthetic polymer conjugate as a gel-type structure. Coupling synthetic polymers with natural compounds represents an important approach to generating gels with superior properties and with potential for biomedical applications. The study presents the preparation of hybrid gels with tunable characteristics by using a spiroacetal polymer and alginate as co-partners in different ratios. The new network formation was tested, and the structure was confirmed by FTIR and SEM techniques. The physical properties of the new gels, namely their thermal stability and swelling behavior, were investigated. The study showed that the increase in alginate content caused a smooth increase in thermal stability due to the additional crosslinking bridges that appeared. Moreover, increasing the content of the synthetic polymer in the structure of the gel network ensures a slower release of carvacrol, the encapsulated bioactive compound.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1597
Author(s):  
Barbora Kalousková ◽  
Ondřej Skořepa ◽  
Denis Cmunt ◽  
Celeste Abreu ◽  
Kateřina Krejčová ◽  
...  

Targeted cancer immunotherapy is a promising tool for restoring immune surveillance and eradicating cancer cells. Hydrophilic polymers modified with coiled coil peptide tags can be used as universal carriers designed for cell-specific delivery of such biologically active proteins. Here, we describe the preparation of pHPMA-based copolymer conjugated with immunologically active protein B7-H6 via complementary coiled coil VAALEKE (peptide E) and VAALKEK (peptide K) sequences. Receptor B7-H6 was described as a binding partner of NKp30, and its expression has been proven for various tumor cell lines. The binding of B7-H6 to NKp30 activates NK cells and results in Fas ligand or granzyme-mediated apoptosis of target tumor cells. In this work, we optimized the expression of coiled coil tagged B7-H6, its ability to bind activating receptor NKp30 has been confirmed by isothermal titration calorimetry, and the binding stoichiometry of prepared chimeric biopolymer has been characterized by analytical ultracentrifugation. Furthermore, this coiled coil B7-H6-loaded polymer conjugate activates NK cells in vitro and, in combination with coiled coil scFv, enables their targeting towards a model tumor cell line. Prepared chimeric biopolymer represents a promising precursor for targeted cancer immunotherapy by activating the cytotoxic activity of natural killer cells.


2021 ◽  
Vol 3 ◽  
Author(s):  
Pallavi Kiran ◽  
Amreen Khan ◽  
Suditi Neekhra ◽  
Shubham Pallod ◽  
Rohit Srivastava

Protein therapeutic formulations are being widely explored as multifunctional nanotherapeutics. Challenges in ensuring susceptibility and efficacy of nanoformulation still prevail owing to various interactions with biological fluids before reaching the target site. Smart polymers with the capability of masking drugs, ease of chemical modification, and multi-stimuli responsiveness can assist controlled delivery. An active moiety like therapeutic protein has started to be known as an important biological formulation with a diverse medicinal prospect. The delivery of proteins and peptides with high target specificity has however been tedious, due to their tendency to aggregate formation in different environmental conditions. Proteins due to high chemical reactivity and poor bioavailability are being researched widely in the field of nanomedicine. Clinically, multiple nano-based formulations have been explored for delivering protein with different carrier systems. A biocompatible and non-toxic polymer-based delivery system serves to tailor the polymer or drug better. Polymers not only aid delivery to the target site but are also responsible for proper stearic orientation of proteins thus protecting them from internal hindrances. Polymers have been shown to conjugate with proteins through covalent linkage rendering stability and enhancing therapeutic efficacy prominently when dealing with the systemic route. Here, we present the recent developments in polymer-protein/drug-linked systems. We aim to address questions by assessing the properties of the conjugate system and optimized delivery approaches. Since thorough characterization is the key aspect for technology to enter into the market, correlating laboratory research with commercially available formulations will also be presented in this review. By examining characteristics including morphology, surface properties, and functionalization, we will expand different hybrid applications from a biomaterial stance applied in in vivo complex biological conditions. Further, we explore understanding related to design criteria and strategies for polymer-protein smart nanomedicines with their potential prophylactic theranostic applications. Overall, we intend to highlight protein-drug delivery through multifunctional smart polymers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1081
Author(s):  
Mohammad O. Faruck ◽  
Prashamsa Koirala ◽  
Jieru Yang ◽  
Michael J. D’Occhio ◽  
Mariusz Skwarczynski ◽  
...  

Contraceptive vaccines are designed to elicit immune responses against major components of animal reproductive systems. These vaccines, which are most commonly administered via injection, typically target gonadotropin-releasing hormone (GnRH). However, the need to restrain animals for treatment limits the field applications of injectable vaccines. Oral administration would broaden vaccine applicability. We explored contraceptive vaccine candidates composed of GnRH peptide hormone, universal T helper PADRE (P), and a poly(methylacrylate) (PMA)-based delivery system. When self-assembled into nanoparticles, PMA-P-GnRH induced the production of high IgG titers after subcutaneous and oral administration in mice. PADRE was then replaced with pig T helper derived from the swine flu virus, and the vaccine was tested in pigs. High levels of systemic antibodies were produced in pigs after both injection and oral administration of the vaccine. In conclusion, we developed a simple peptide–polymer conjugate that shows promise as an effective, adjuvant-free, oral GnRH-based contraceptive vaccine.


2021 ◽  
pp. 138736
Author(s):  
Wen-Dong Quan ◽  
Lewis A. Baker ◽  
Richard Napier ◽  
Rachel K. O'Reilly ◽  
Vasilios G. Stavros ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Marina R. Tavares ◽  
Klára Hrabánková ◽  
Rafał Konefał ◽  
Martin Kaňa ◽  
Blanka Říhová ◽  
...  

The study describes the synthesis, physicochemical properties, and biological evaluation of polymer therapeutics based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers intended for a tumor-targeted immuno-oncotherapy. Water-soluble linear and cholesterol-containing HPMA precursors were synthesized using controlled reversible addition–fragmentation chain transfer polymerization to reach molecular weight Mn about 2 × 104 g·mol−1 and low dispersity. These linear or self-assembled micellar conjugates, containing immunomodulatory agent cucurbitacin-D (CuD) or the anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond, showed a hydrodynamic size of 10–30 nm in aqueous solutions. The CuD-containing conjugates were stable in conditions mimicking blood. Importantly, a massive release of active CuD in buffer mimicking the acidic tumor environment was observed. In vitro, both the linear (LP-CuD) and the micellar (MP-CuD) conjugates carrying CuD showed cytostatic/cytotoxic activity against several cancer cell lines. In a murine metastatic and difficult-to-treat 4T1 mammary carcinoma, only LP-CuD showed an anticancer effect. Indeed, the co-treatment with Dox-containing micellar polymer conjugate and LP-CuD showed potentiation of the anticancer effect. The results indicate that the binding of CuD, characterized by prominent hydrophobic nature and low bioavailability, to the polymer carrier allows a safe and effective delivery. Therefore, the conjugate could serve as a potential component of immuno-oncotherapy schemes within the next preclinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document