tension generation
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 7)

H-INDEX

28
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Carmela Filomena ◽  
Daniel L Yamamoto ◽  
Pierluigi Carullo ◽  
Roman Medvedev ◽  
Andrea Ghisleni ◽  
...  

Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
B. Buchmann ◽  
L. K. Engelbrecht ◽  
P. Fernandez ◽  
F. P. Hutterer ◽  
M. K. Raich ◽  
...  

AbstractEpithelial branch elongation is a central developmental process during branching morphogenesis in diverse organs. This fundamental growth process into large arborized epithelial networks is accompanied by structural reorganization of the surrounding extracellular matrix (ECM), well beyond its mechanical linear response regime. Here, we report that epithelial ductal elongation within human mammary organoid branches relies on the non-linear and plastic mechanical response of the surrounding collagen. Specifically, we demonstrate that collective back-and-forth motion of cells within the branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical tension equilibrium sets a framework to understand how mechanical cues can direct ductal branch elongation.


2020 ◽  
Author(s):  
Fusheng Liu ◽  
Hou Wu ◽  
Xiaoyu Yang ◽  
Yuqin Dong ◽  
Guoyou Huang ◽  
...  

AbstractElectrical and paracrine couplings between cardiomyocytes (CMs) and myofibroblasts (MFBs) affect both physiology and pathophysiology of cardiac tissues in a range of animal models, but relating these observations to humans is a challenge because effects vary greatly across species. To address this challenge, we developed a mathematical model for mechanoelectrical interactions between CM and MFB, considering both electrical and paracrine couplings between CMs and MFBs, with the aim of identifying the sources of cross-species variation and extrapolating animal models to predicted effects in humans. Our results revealed substantial differences across species in how these couplings modulate excitation-contraction coupling and Ca2+ transients of CMs. Both classes of couplings prolong action potential and increase APD in rat CMs, but shorten action potential and decrease APD in human CMs. Electrical coupling attenuates Ca2+ transients and active tension generation in human CMs, but has no significant effect on rat CMs. Paracrine coupling reduces Ca2+ transients and active tension in both human and rat CM. The results suggest that the variance of functional interactions between CM and MFB in cross-species may be explained by differences in the transient outward K+ currents associated with the KCND2 gene, and thus suggest potential therapeutic pathways for fibrotic cardiomyopathy.


2020 ◽  
Vol 203 ◽  
pp. 104540
Author(s):  
Erin Arai ◽  
Alexandre Tartakovsky ◽  
R. Glynn Holt ◽  
Sheryl Grace ◽  
Emily Ryan

2019 ◽  
Author(s):  
B. Buchmann ◽  
L.K. Meixner ◽  
P. Fernandez ◽  
F.P. Hutterer ◽  
M.K. Raich ◽  
...  

Although branching morphogenesis is central for organogenesis in diverse organs, the underlying self-organizing principles have yet to be identified. Here, we show that invasive branching morphogenesis in human mammary organoids relies on an intricate tension-driven feedback mechanism, which is based on the nonlinear and plastic mechanical response of the surrounding collagen network. Specifically, we demonstrate that collective motion of cells within organoid branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical feedback-loop sets a framework to understand how mechanical cues direct organogenesis.


Author(s):  
Giulia Vitale ◽  
Cecilia Ferrantini ◽  
Nicoletta Piroddi ◽  
Beatrice Scellini ◽  
Josè Manuel Pioner ◽  
...  

AbstractFull muscle relaxation happens when [Ca2+] falls below the threshold for force activation. Several experimental models, from whole muscle organs and intact muscle down to skinned fibers, have been used to explore the cascade of kinetic events leading to mechanical relaxation. The use of single myofibrils together with fast solution switching techniques, has provided new information about the role of cross-bridge (CB) dissociation in the time course of isometric force decay. Myofibril’s relaxation is biphasic starting with a slow seemingly linear phase, with a rate constant, slow kREL, followed by a fast mono-exponential phase. Sarcomeres remain isometric during the slow force decay that reflects CB detachment under isometric conditions while the final fast relaxation phase begins with a sudden give of few sarcomeres and is then dominated by intersarcomere dynamics. Based on a simple two-state model of the CB cycle, myofibril slow kREL represents the apparent forward rate with which CBs leave force generating states (gapp) under isometric conditions and correlates with the energy cost of tension generation (ATPase/tension ratio); in short slow kREL ~ gapp ~ tension cost. The validation of this relationship is obtained by simultaneously measuring maximal isometric force and ATP consumption in skinned myocardial strips that provide an unambiguous determination of the relation between contractile and energetic properties of the sarcomere. Thus, combining kinetic experiments in isolated myofibrils and mechanical and energetic measurements in multicellular cardiac strips, we are able to provide direct evidence for a positive linear correlation between myofibril isometric relaxation kinetics (slow kREL) and the energy cost of force production both measured in preparations from the same cardiac sample. This correlation remains true among different types of muscles with different ATPase activities and also when CB kinetics are altered by cardiomyopathy-related mutations. Sarcomeric mutations associated to hypertrophic cardiomyopathy (HCM), a primary cardiac disorder caused by mutations in genes encoding sarcomeric proteins, have been often found to accelerate CB turnover rate and increase the energy cost of myocardial contraction. Here we review data showing that faster CB detachment results in a proportional increase in the energetic cost of tension generation in heart samples from both HCM patients and mouse models of the disease.


2018 ◽  
Vol 151 (1) ◽  
pp. 18-29 ◽  
Author(s):  
Nicoletta Piroddi ◽  
E. Rosalie Witjas-Paalberends ◽  
Claudia Ferrara ◽  
Cecilia Ferrantini ◽  
Giulia Vitale ◽  
...  

Hypertrophic cardiomyopathy (HCM) is a genetic form of left ventricular hypertrophy, primarily caused by mutations in sarcomere proteins. The cardiac remodeling that occurs as the disease develops can mask the pathogenic impact of the mutation. Here, to discriminate between mutation-induced and disease-related changes in myofilament function, we investigate the pathogenic mechanisms underlying HCM in a patient carrying a homozygous mutation (K280N) in the cardiac troponin T gene (TNNT2), which results in 100% mutant cardiac troponin T. We examine sarcomere mechanics and energetics in K280N-isolated myofibrils and demembranated muscle strips, before and after replacement of the endogenous troponin. We also compare these data to those of control preparations from donor hearts, aortic stenosis patients (LVHao), and HCM patients negative for sarcomeric protein mutations (HCMsmn). The rate constant of tension generation following maximal Ca2+ activation (kACT) and the rate constant of isometric relaxation (slow kREL) are markedly faster in K280N myofibrils than in all control groups. Simultaneous measurements of maximal isometric ATPase activity and Ca2+-activated tension in demembranated muscle strips also demonstrate that the energy cost of tension generation is higher in the K280N than in all controls. Replacement of mutant protein by exchange with wild-type troponin in the K280N preparations reduces kACT, slow kREL, and tension cost close to control values. In donor myofibrils and HCMsmn demembranated strips, replacement of endogenous troponin with troponin containing the K280N mutant increases kACT, slow kREL, and tension cost. The K280N TNNT2 mutation directly alters the apparent cross-bridge kinetics and impairs sarcomere energetics. This result supports the hypothesis that inefficient ATP utilization by myofilaments plays a central role in the pathogenesis of the disease.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
William A Kronert ◽  
Kaylyn M Bell ◽  
Meera C Viswanathan ◽  
Girish C Melkani ◽  
Adriana S Trujillo ◽  
...  

K146N is a dominant mutation in human β-cardiac myosin heavy chain, which causes hypertrophic cardiomyopathy. We examined how Drosophila muscle responds to this mutation and integratively analyzed the biochemical, physiological and mechanical foundations of the disease. ATPase assays, actin motility, and indirect flight muscle mechanics suggest at least two rate constants of the cross-bridge cycle are altered by the mutation: increased myosin attachment to actin and decreased detachment, yielding prolonged binding. This increases isometric force generation, but also resistive force and work absorption during cyclical contractions, resulting in decreased work, power output, flight ability and degeneration of flight muscle sarcomere morphology. Consistent with prolonged cross-bridge binding serving as the mechanistic basis of the disease and with human phenotypes, 146N/+ hearts are hypercontractile with increased tension generation periods, decreased diastolic/systolic diameters and myofibrillar disarray. This suggests that screening mutated Drosophila hearts could rapidly identify hypertrophic cardiomyopathy alleles and treatments.


Sign in / Sign up

Export Citation Format

Share Document