Dopamine-induced translocation of protein kinase C isoforms visualized in renal epithelial cells

2000 ◽  
Vol 279 (6) ◽  
pp. C1812-C1818 ◽  
Author(s):  
Susana Nowicki ◽  
Maria Sol Kruse ◽  
Hjalmar Brismar ◽  
Anita Aperia

Short-term regulation of sodium metabolism is dependent on the modulation of the activity of sodium transporters by first and second messengers. In understanding diseases associated with sodium retention, it is necessary to identify the coupling between these messengers. We have examined whether dopamine, an important first messenger in tubular cells, activates and translocates various protein kinase C (PKC) isoforms. We used a proximal tubular-like cell line, LLCPK-1 cells, in which dopamine was found to inhibit Na+-K+-ATPase in a PKC-dependent manner. Translocation of PKC isoforms was studied with both subcellular fractionation and confocal microscopy. Both techniques revealed a dopamine-induced translocation from cytosol to plasma membrane of PKC-α and -ε, but not of PKC-δ, -γ, and -ζ. The process of subcellular fractionation resulted in partial translocation of PKC-ε. This artifact was eliminated in confocal studies. Confocal imaging permitted detection of translocation within 20 s. Translocation was abolished by a phospholipase C inhibitor and by an antagonist against the dopamine 1 subtype (D1) but not the 2 subtype of receptor (D2). In conclusion, this study visualizes in renal epithelial cells a very rapid activation of the PKC-α and -ε isoforms by the D1 receptor subtype.

2003 ◽  
Vol 31 (06) ◽  
pp. 871-878 ◽  
Author(s):  
Xianqin Qu ◽  
Lei Dang ◽  
J. Paul Seale

In this ex vivo study, the inhibitory activity of hypocrellin A (HA), a perylene quinonoid pigment isolated from the Chinese medicinal fungus Hypocrella bambuase, on protein kinase C (PKC) enzyme activity in insulin target tissues of obese Zucker rats was assessed. Pre-incubation with HA for 30 minutes significantly inhibited the activity of partially purified PKC enzyme from liver and soleus skeletal muscle in a dose-dependent manner ( IC 50=0.07 and 0.26 μg/ml, respectively). HA produced a greater inhibitory effect in enzyme prepared from the liver than enzyme prepared from soleus muscle. Since total PKC activity in these two insulin target tissues is the net result of several different isoforms of PKC, and PKC-θ is a major isoform expressed in the soleus skeletal muscle, the present data suggest that the naturally occurring compound, HA, may selectively inhibit certain PKC isoforms other than PKC-θ. Further investigations are required to determine which PKC isoforms are most susceptible to HA and whether changes in PKC signaling during treatment with HA can reverse abnormalities of glucose and lipid metabolism in insulin resistant and diabetic states.


2009 ◽  
Vol 29 (6) ◽  
pp. 477-487
Author(s):  
Pochuen Shieh ◽  
Chih-Hung Lee ◽  
Ng Ling Yi ◽  
Chung-Ren Jan

The effect of the cardiovascular drug carvedilol on cytosolic free Ca2+ concentrations ([Ca 2+]i) and viability was examined in Statens Seruminstitut rabbit cornea (SIRC) corneal epithelial cells. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] (WST-1), respectively. Carvedilol at concentrations between 1 and 30 μM increased [Ca 2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Carvedilol induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was inhibited by suppression of protein kinase C activity. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca 2+ pump inhibitor), carvedilol-induced [Ca2+]i rise was reduced; and conversely, carvedilol pretreatment inhibited a major part of thapsigargin-induced [Ca 2+]i rise. Addition of the phospholipase C inhibitor 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U73122; 2 μM) did not change carvedilol-induced [Ca2+]i rise. At concentrations between 5 and 70 μM, carvedilol killed cells in a concentration-dependent manner. The cytotoxic effect of 20 μM carvedilol was not reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Apoptosis was induced by 5—70 μM carvedilol. Collectively, in SIRC corneal epithelial cells, carvedilol-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca 2+ influx via protein kinase C-regulated Ca2+ channels. Carvedilol-caused cytotoxicity was mediated by Ca2+-independent apoptosis in a concentration-dependent manner.


1996 ◽  
Vol 316 (3) ◽  
pp. 865-871 ◽  
Author(s):  
Ernst U. FREVERT ◽  
Barbara B. KAHN

The Ca2+-insensitive protein kinase C (PKC) isoforms ε, η, δ and ζ are possible direct downstream targets of phosphatidylinositol 3-kinase (PI3-K), and might therefore be involved in insulin signalling. Although isoform-specific changes in PKC expression have been reported for skeletal muscle and liver in insulin-resistant states, little is known about these isoforms in adipocytes. Therefore we studied (1) expression and subcellular localization of these isoforms in murine adipocytes, (2) translocation of specific isoforms to membranes in response to treatment with insulin and phorbol 12-myristate 13-acetate (PMA) and (3) regulation of expression in insulin-resistant states. The PKC isoforms ε, η, δ and ζ are expressed in adipocytes. Immunoreactivity for all isoforms is higher in the membranes than in the cytosol, but subcellular fractionation by differential centrifugation shows an isoform-specific distribution within the membrane fractions. PMA treatment of adipocytes induces translocation of PKC-ε and -δ from the cytosol to the membrane fractions. Insulin treatment does not alter the subcellular distribution of any of the isoforms. 3T3-L1 adipocytes express PKC-ε and -ζ, and PKC-ε expression increases with differentiation from preadipocytes to adipocytes. PKC-ε expression decreases in an adipose-specific and age/obesity-dependent manner in two insulin-resistant models, the brown-adipose-tissue-deficient mouse and db/db mouse compared with control mice. We conclude that, although none of the isoforms investigated seems to be activated by insulin, the decrease in PKC-ε expression might contribute to metabolic alterations in adipocytes associated with insulin resistance and obesity.


1998 ◽  
Vol 1402 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Nawab Ali ◽  
Surasak Kantachuvesiri ◽  
Joan I Smallwood ◽  
Lawrence J Macala ◽  
Carlos Isales ◽  
...  

1994 ◽  
Vol 269 (12) ◽  
pp. 8872-8877
Author(s):  
F. Vrtovsnik ◽  
M. Jourdain ◽  
G. Cherqui ◽  
J. Lefebvre ◽  
G. Friedlander

Sign in / Sign up

Export Citation Format

Share Document