Developmental switch in brain nutrient transporter expression in the rat

2003 ◽  
Vol 285 (5) ◽  
pp. E1127-E1134 ◽  
Author(s):  
Susan J. Vannucci ◽  
Ian A. Simpson

Normal development of both human and rat brain is associated with a switch in metabolic fuel from a combination of glucose and ketone bodies in the immature brain to a nearly total reliance on glucose in the adult. The delivery of glucose, lactate, and ketone bodies from the blood to the brain requires specific transporter proteins, glucose and monocarboxylic acid transporter proteins (GLUTs and MCTs), respectively. Developmental expression of the GLUTs in rat brain, i.e., 55-kDa GLUT1 in the blood-brain barrier (BBB), 45-kDa GLUT1 and GLUT3 in vascular-free brain, corresponds to maturational increases in cerebral glucose uptake and utilization. It has been suggested that MCT expression peaks during suckling and sharply declines thereafter, although a comparable detailed study has not been done. This study investigated the temporal and regional expression of MCT1 and MCT2 mRNA and protein in the BBB and the nonvascular brain during postnatal development in the rat. The results confirmed maximal MCT1 mRNA and protein expression in the BBB during suckling and a decline with maturation, coincident with the switch to glucose as the predominant cerebral fuel. However, nonvascular MCT1 and MCT2 levels do not reflect changes in cerebral energy metabolism, suggesting a more complex regulation. Although MCT1 assumes a predominantly glial expression in postweanling brain, the concentration remains fairly constant, as does that of MCT2 in neurons. The maintenance of nonvascular MCT levels in the adult brain implies a major role for these proteins, in concert with the GLUTs in both neurons and astrocytes, to transfer glycolytic intermediates during cerebral energy metabolism.

1971 ◽  
Vol 121 (1) ◽  
pp. 49-53 ◽  
Author(s):  
M. Ann Page ◽  
H. A. Krebs ◽  
D. H. Williamson

1. The activities of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase in rat brain at birth were found to be about two-thirds of those of adult rat brain, expressed per g wet wt. The activities rose throughout the suckling period and at the time of weaning reached values about three times higher than those for adult brain. Later they gradually declined. 2. At birth the activity of acetoacetyl-CoA thiolase in rat brain was about 60% higher than in the adult. During the suckling period there was no significant change in activity. 3. In rat kidney the activities of the three enzymes at birth were less than one-third of those at maturity. They gradually rose and after 5 weeks approached the adult value. Similar results were obtained with rat heart. 4. The activity of glutamate dehydrogenase (a mitochondrial enzyme like 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase) also rose in brain and kidney during the suckling period, but at no stage did it exceed the adult value. 5. Throughout the suckling period the total ketone-body concentration in the blood was about six times higher than in adult fed rats, and the concentration of free fatty acids in the blood was three to four times higher. 6. It is concluded that the rate of ketone-body utilization in brains of suckling rats is determined by both the greater amounts of the key enzymes in the tissue and the high concentrations of ketone bodies in the blood. In addition, the low activities of the relevant enzymes in kidney and heart of suckling rats may make available more ketone bodies for the brain.


1984 ◽  
Vol 6 (1) ◽  
pp. 51-54 ◽  
Author(s):  
K. Kato ◽  
F. Suzuki ◽  
T. Watanabe ◽  
R. Semba ◽  
H. Keino

1998 ◽  
Vol 329 (2) ◽  
pp. 373-381 ◽  
Author(s):  
E. Tim CULLINGFORD ◽  
T. Colin DOLPHIN ◽  
K. Kishore BHAKOO ◽  
Stefan PEUCHEN ◽  
Laura CANEVARI ◽  
...  

We have investigated, by RNase protection assays in rat brain regions and primary cortical astrocyte cultures, the presence of the mRNA species encoding the three mitochondrially located enzymes acetoacetyl-CoA thiolase, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mt. HMG-CoA synthase) and HMG-CoA lyase (HMG-CoA lyase) that together constitute the ketogenic HMG-CoA cycle. As a prerequisite we obtained a full-length cDNA encoding rat HMG-CoA lyase by degenerate oligonucleotide-primed PCR coupled to a modification of PCR-rapid amplification of cDNA ends (PCR-RACE). We report here: (1) the nucleotide sequence of rat mt. HMG-CoA lyase, (2) detection of the mRNA species encoding all three HMG-CoA cycle enzymes in all regions of rat brain during suckling, (3) approximately twice the abundance of mt. HMG-CoA synthase mRNA in cerebellum than in cortex in 11-day-old suckling rat pups, (4) significantly lower abundances of mt. HMG-CoA synthase mRNA in brain regions derived from rats weaned to a high-carbohydrate/low-fat diet compared with the corresponding regions derived from the suckling rat, and (5) the presence of mt. HMG-CoA synthase mRNA in primary cultures of neonatal cortical astrocytes at an abundance similar to that found in liver of weaned animals. These results provide preliminary evidence that certain neural cell types possess ketogenic potential and might thus have a direct role in the provision of fatty acid-derived ketone bodies during the suckling period.


1996 ◽  
Vol 17 (6) ◽  
pp. 849-857 ◽  
Author(s):  
Takahiro Nakayama ◽  
Hideki Takahashi ◽  
Masaomi Miyamoto ◽  
Giichi Goto ◽  
Yasuo Nagai

1972 ◽  
Vol 19 (7) ◽  
pp. 1659-1670 ◽  
Author(s):  
Sandra E. Granett ◽  
L. P. Kozak ◽  
Jean P. McIntyre ◽  
W. W. Wells

Sign in / Sign up

Export Citation Format

Share Document