mrna and protein expression
Recently Published Documents





2022 ◽  
Vol 15 (1) ◽  
pp. 1-8
Yu-Zhen Li ◽  
Ya Shen ◽  
Lian-Di Gao ◽  
Xin-Xin Chen ◽  

AIM: To explore the effect of miR-184 and miR-205 on the proliferation and metastasis of conjunctival mucosa associated lymphoid tissue (MALT) lymphoma. METHODS: Tissue of tumor and adjacent normal control from 5 patients with conjunctival MALT was included. RPMI8226 cell line was selected to verify the effect of miRNAs in B cells. The function of microRNA on the RPMI8226 cell apoptosis, migration and invasion was evaluated by apoptosis assay and Transwell assay. The mRNA and protein expression were examined by quantitative RT-PCR and Western blotting. The effect of microRNA on regulation of downstream gene expression was evaluated by luciferase report assay. RESULTS: A decreased level of miR-184 and miR-205 was observed in MALT lymphoma tissue. Exogenous miR-184 and miR-205 analogues promoted apoptosis, and inhibited the survival, migration, and invasion of RPMI8226 cells. miR-184 and miR-205 inhibitor reversed the process. The RNA and protein level of RasL10B and TNFAIP8 were downregulated in MALT lymphoma tissue. The exogenous of miR-184 and miR-205 promoted the expression of RasL10B and TNFAIP8. Meanwhile, inhibition of miR-184 and miR-205 repressed the expression of target gene, RasL10B and TNFAIP8. CONCLUSION: miR-184 and miR-205 suppresses the tumorigenesis of conjunctival MALT lymphoma through regulating RasL10B and TNFAIP8.

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 142
Mimi Nguyen ◽  
Reem Sabry ◽  
Ola S. Davis ◽  
Laura A. Favetta

Bisphenol A (BPA) and its analogs, bisphenol S (BPS) and bisphenol F (BPF), might impact fertility by altering oxidative stress pathways. Here, we hypothesize that bisphenols-induced oxidative stress is responsible for decreased gamete quality. In both female (cumulus-oocyte-complexes—COCs) and male (spermatozoa), oxidative stress was measured by CM-H2DCFDA assay and key ROS scavengers (SOD1, SOD2, GPX1, GPX4, CAT) were quantified at the mRNA and protein levels using qPCR and Western blot (COCs)/immunofluorescence (sperm). Either gamete was treated in five groups: control, vehicle, and 0.05 mg/mL of BPA, BPS, or BPF. Our results show elevated ROS in BPA-treated COCs but decreased production in BPS- and BPF-treated spermatozoa. Additionally, both mRNA and protein expression of SOD2, GPX1, and GPX4 were decreased in BPA-treated COCs (p < 0.05). In sperm, motility (p < 0.03), but not morphology, was significantly altered by bisphenols. SOD1 mRNA expression was significantly increased, while GPX4 was significantly reduced. These results support BPA’s ability to alter oxidative stress in oocytes and, to a lesser extent, in sperm. However, BPS and BPF likely act through different mechanisms.

2022 ◽  
Haiping Jiang ◽  
Dongzhi Zhang ◽  
Wenwu Liu ◽  
Lixiang Wang ◽  
Karpov Denis Aleksandrovich ◽  

Abstract Background: Since the mutation of isocitrate dehydrogenase 1 was confirmed to be different in the tumor microenvironment of multiple cancer types, several researchers have included it in the study of tumor-infiltrating immune cells. Interferon-stimulated exonuclease gene 20 (ISG20) plays a role in the modulation of immunity and inflammation, and its abnormally high expression is conducive for the progression of tumor malignancy. However, whether ISG20 is associated with isocitrate dehydrogenase 1 mutation during tumorigenesis and cancer progression remains unknown to date. Methods: TIMER2.0, ONCOMINE, GEPIA2, TCGA and CGGA were applied to assess the clinical significance of ISG20 and its correlation with tumor-infiltrating immune cells in glioma. cBioPortal and MethSurv databases were used to observe the genetic and DNA methylation changes of ISG20, respectively. Visualization of data was mostly achieved by R language. Quantitative real-time PCR (qRT-PCR) and Immunohistochemistry (IHC) was performed to evaluate the mRNA and protein expression.Results: ISG20 expression was significantly different in most cancers. However, when we combined ISG20 with isocitrate dehydrogenase 1 mutation, we found significant differences only in glioblastoma (GBM). The clinical values of ISG20 in glioblastoma showed that the ISG20 overexpression was strongly associated with a worse overall survival (OS). Additionally, ISG20 was altered in 9% of samples of patients with GBM, and ISG20 expression was negatively correlated with its DNA methylation level. More importantly, ISG20 expression was associated with macrophage alternatively activated (M2) polarization in glioblastoma. Conclusions: ISG20 overexpression is conducive to malignant phenotype but adverse to OS, suggesting that ISG20 is a potential therapeutic target and prognosis and predictive biomarker in patients with GBM.

Aling Shen ◽  
Liya Liu ◽  
Yue Huang ◽  
Zhiqing Shen ◽  
Meizhu Wu ◽  

Background: HAUS6 participates in microtubule-dependent microtubule amplification, but its role in malignancies including colorectal cancer (CRC) has not been explored. We therefore assessed the potential oncogenic activities of HAUS6 in CRC.Results: HAUS6 mRNA and protein expression is higher in CRC tissues, and high HAUS6 expression is correlated with shorter overall survival in CRC patients. HAUS6 knockdown in CRC cell lines suppressed cell growth in vitro and in vivo by inhibiting cell viability, survival and arresting cell cycle progression at G0/G1, while HAUS6 over-expression increased cell viability. We showed that these effects are dependent on activation of the p53/p21 signalling pathway by reducing p53 and p21 degradation. Moreover, combination of HAUS6 knockdown and 5-FU treatment further enhanced the suppression of cell proliferation of CRC cells by increasing activation of the p53/p21 pathway.Conclusion: Our study highlights a potential oncogenic role for HAUS6 in CRC. Targeting HAUS6 may be a promising novel prognostic marker and chemotherapeutic target for treating CRC patients.

Ang Hu ◽  
Zeming Hu ◽  
Jianming Ye ◽  
Yuwen Liu ◽  
Zhonghong Lai ◽  

Metformin, a traditional first-line pharmacologic treatment for type 2 diabetes, has recently been shown to impart anti-cancer effects on hepatocellular carcinoma (HCC). However, the molecular mechanism of metformin on its antitumor activity is still not completely clear. The Sonic hedgehog (Shh) signaling pathway is closely associated with the initiation and progression of HCC. Therefore, the aim of the current study was to investigate the effects of metformin on the biological behavior of HCC and the underlying functional mechanism of metformin on the Shh pathway. The HCC cellular was induced in HepG2 cells by recombinant human Shh (rhShh). The effects of metformin on proliferation and metastasis were evaluated by proliferation, wound healing and invasion assays in vitro. The mRNA and protein expression levels of proteins related to the Shh pathway were measured by western blotting, quantitative PCR and immunofluorescence staining. Metformin inhibited rhShh-induced proliferation and metastasis. Furthermore, metformin decreased mRNA and protein expression of components of the Shh pathway including Shh, Ptch, Smo and Gli-1. Silencing of AMPK in the presence of metformin revealed that metformin could exert its inhibitory effect via AMPK. Our findings demonstrate that metformin can suppress the migration and invasion of HepG2 cells via AMPK-mediated inhibition of the Shh pathway.

2022 ◽  
Xiaodan Sun ◽  
Peiyan Zhao ◽  
Hui Li ◽  
Yan liu ◽  
Ying Cheng

Abstract Background: KRAS/KEAP1 (KK) co-mutant lung adenocarcinoma (LUAD) exhibited poor response to immune checkpoint inhibitors (ICI) via shaping a suppressive tumor immune microenvironment, the mechanism remains to be elucidated. Methods: The mRNA and protein expression of target molecules were analyzed by qRT-PCR and Western blot, respectively. The subcellular location of NRF2 was observed by immunofluorescence staining, and nuclear and cytoplasm isolation. After exogenous over-expression and knockdown of NRF2 and the addition of a STING pathway inhibitor in tumor cells, the effects on the CD8+ T cell recruitment was detected using chemotaxis assay, and the secretion of chemokines CCL5 and CXCL10 was analyzed by ELISA. The potential NRF2 target BRCA1 was identified using bioinformatic approaches and verified by a dual luciferase reporter assay. Results: NRF2, the target of KEAP1, was overexpressed and activated in KK type cells. NRF2 effected as a negative regulator of CD8+ T cells recruitment by decreasing CCL5 and CXCL10 chemokines in KK type LUAD. Mechanistically, NRF2 promoted the transcription and expression of BRCA1 to repair DNA damage, resulting in STING pathway inactivation. Conclusion: The combination of NRF2 inhibitor or STING agonist with ICI may be a promising therapeutic approach for patients with KK type LUAD.

2022 ◽  
Vol 15 (1) ◽  
pp. 57
Katalin Szabó ◽  
Ágnes Kemény ◽  
Noémi Balázs ◽  
Esam Khanfar ◽  
Zoltán Sándor ◽  

Transient Receptor Potential Ankyrin 1 (TRPA1) has been reported to influence neuroinflammation and lymphocyte function. We analysed the immune phenotype and activation characteristics of TRPA1-deficient mice (knockout—KO) generated by targeted deletion of the pore-loop domain of the ion channel. We compared TRPA1 mRNA and protein expression in monocyte and lymphocyte subpopulations isolated from primary and secondary lymphatic organs of wild type (WT) and KO mice. qRT-PCR and flow cytometric studies indicated a higher level of TRPA1 in monocytes than in lymphocytes, but both were orders of magnitude lower than in sensory neurons. We found lower CD4+/CD8+ thymocyte ratios, diminished CD4/CD8 rates, and B cell numbers in the KO mice. Early activation marker CD69 was lower in CD4+ T cells of KO, while the level of CD8+/CD25+ cells was higher. In vitro TcR-mediated activation did not result in significant differences in CD69 level between WT and KO splenocytes, but lower cytokine (IL-1β, IL-6, TNF-α, IL-17A, IL-22, and RANTES) secretion was observed in KO splenocytes. Basal intracellular Ca2+ level and TcR-induced Ca2+ signal in T lymphocytes did not differ significantly, but interestingly, imiquimod-induced Ca2+ level in KO thymocytes was higher. Our results support the role of TRPA1 in the regulation of activation, cytokine production, and T and B lymphocytes composition in mice.

2022 ◽  
Vol 12 (1) ◽  
pp. 167-173
Wei Liu ◽  
Lili Huang ◽  
Cuiying Zhang ◽  
Zuozhong Liu

Arthritis and osteoporosis are two common disorders in the world, especially for the elder, but the current treatments have limited efficacy. Herein, we aimed to determine whether the novel technique, neurological training can alleviate osteoporosis complicated with arthritis in rat model. Thirty rats were assigned into normal group, model group, and treatment group (treated with forsythin and neurological training) (n = 10) followed by assessment of chondrocytes and osteoblasts using Mankin score, apoptosis by TUNEL and flow cytometry, and IL-1β, TNF-α, and Aggrecan levels. Apoptotic chondrocytes of treatment group (27.43±1.34) was lower than model group (p < 0.05), whereas amount of osteoblast was increased upon forsythin and neurological training, with lower Mankin’s score (6.38±0.76). Besides, the content of IL-1β and TNF-α of treatment group was significantly lower but Aggrecan mRNA and protein expression was significantly higher. In conclusion, neurological training could protect and alleviate osteoporosis complicated with arthritis.

2022 ◽  
Vol 12 (1) ◽  
pp. 183-191
Yuee Zhao ◽  
Songping Yu ◽  
Zhenqiang Huang ◽  
Jiaqi Chen ◽  
Xuying Zhang ◽  

The study focused on the therapeutic effects of resveratrol, sirtuin 1 (Sirt1) activator, on glaucoma, and its influence on mitogen-activated protein kinase (MAPK) pathway. Specifically, C57BL/6 mice were used and the glaucoma mouse model was established by intraperitoneal injection of N-methyl-D-aspartate (NMDA). According to different treatment methods, they were randomly rolled into 3 groups: control group (no treatment), model group (glaucoma mouse model), and resveratrol (Res) group (intraperitoneal injection of 20 mg/kg resveratrol solution on the basis of model group). The intraocular pressure was measured, and Sirt1 mRNA and protein expression was detected using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Subsequently, hematoxylin-eosin staining was used to observe histopathological morphology, the immunofluorescence labeling was used to identify retinal survival ganglia, and Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and Western blot were for apoptotic cells determination and the expression of c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 protein in mitogen-activated protein kinase (MAPK) pathway, respectively. The model group showed lower intraocular pressure, Sirt1 mRNA and protein expression, number of survival retinal ganglion cells (RGCs), and thinner retina versus the control group (P < 0.05), but number of apoptotic RGCs and the phosphorylation levels of the three kinds of protein were higher (P < 0.05), and it exhibited no notable difference from the Res group (P > 0.05). Also, compared with the control group, the number of survival RGCs in the Res group was reduced (P < 0.05), but no notable difference was noted in the retinal thickness, the number of apoptotic RGCs, and the phosphorylation levels of the three kinds of protein (P > 0.05). In conclusion, resveratrol, the Sirt1 activator, can inhibit RGCs apoptosis through the MAPK signaling pathway and improve the pathological manifestations of glaucoma animal models, thus playing a protective role of the retina.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Dan Li ◽  
Tao Yu ◽  
Junjie Hu ◽  
Jie Wu ◽  
Shi Feng ◽  

Background. CYP39A1 is a poorly characterized metabolic enzyme that has been investigated in a few tumors. However, the role of CYP39A1 in hepatocellular carcinoma (HCC) has not yet been clarified. In this study, the expression and clinical significance of CYP39A1 in HCC were explored. Methods. CYP39A1 protein expression was detected in Akt/c-Met-induced HCC mice and 14 paired fresh HCC samples as well as another 159 HCC and matched noncancerous tissues. Meanwhile, the mRNA expression was analyzed by GEO and TCGA analysis and validated in 14 paired fresh HCC tissues. Furthermore, the relationships between CYP39A1 expression and clinicopathologic features as well as prognosis were analyzed. HCC cell growth changes were analyzed by cell viability assays after CYP39A1 overexpression and then validated after CYP39A1 knockout by DepMap database analysis. Results. CYP39A1 protein expression was lower expressed in HCC mouse models, and its mRNA and protein expression were also downregulated in HCC compared with noncancerous liver tissues. Higher CYP39A1 expression was associated with well differentiation. Moreover, survival analysis indicated that lower CYP39A1 expression was associated with poorer overall survival. In addition, HepG2 and SMMC-7721 cell viability were inhibited after CYP39A1 overexpression. Genome-wide CRISPR/Cas9 proliferation screening indicated that knockout of CYP39A1 could promote HCC cell growth. Likewise, p-NF-κB and Nrf2 were suppressed after CYP39A1 overexpression. It is worth mentioning that total bile acid, total bilirubin, and direct bilirubin were significantly increased in the patients with low CYP39A1 expression. Conclusions. Downregulation of CYP39A1 is associated with HCC carcinogenesis, tumor differentiation, and poor overall survival, suggesting that CYP39A1 may serve as a tumor suppressor gene and novel biomarker for HCC patients.

Sign in / Sign up

Export Citation Format

Share Document