Impaired insulin action but normal insulin receptor activity in diabetic rat liver: effect of vanadate

1990 ◽  
Vol 258 (3) ◽  
pp. E459-E467 ◽  
Author(s):  
O. Blondel ◽  
J. Simon ◽  
B. Chevalier ◽  
B. Portha

In vivo insulin resistance is a characteristic of the liver and peripheral tissues in 10-wk-old female rats with non-insulin-dependent diabetes induced by streptozotocin given on day 5 after birth. Oral administration of vanadate (0.2 mg/ml) for 20 days in the diabetic rats lowered their plasma glucose levels to normal values without affecting their basal plasma insulin levels. In the basal state as well as after submaximal or maximal hyperinsulinemia (euglycemic clamp studies), peripheral glucose utilization and hepatic glucose production in vivo were normalized in the diabetic rats after the vanadate treatment. In wheat germ agglutinin purified receptors, 125I-labeled porcine insulin binding, basal and insulin-stimulated insulin receptor kinase activities for both the autophosphorylation of the beta-subunit and the phosphorylation of the artificial substrate poly (Glu-Tyr) 4:1, were found identical in diabetic and control rats, treated or not with vanadate. Liver phosphoenolpyruvate carboxykinase activity was significantly enhanced in untreated diabetic rats (P less than 0.01) as compared with control rats and returned to normal values after the 20-day vanadate treatment. Thus, in that model of non-insulin-dependent diabetes, 1) oral vanadate exerts a corrective insulin-like effect on impaired insulin action both at the level of liver and peripheral tissues, 2) impaired insulin action with no alteration of the insulin receptor tyrosine kinase is observed in the liver of untreated rats, and 3) corrective effect of vanadate on liver glucose metabolism is probably distal to the insulin receptor kinase activity.

2000 ◽  
Vol 166 (2) ◽  
pp. 275-281 ◽  
Author(s):  
HH Klein ◽  
R Muller ◽  
M Drenckhan ◽  
M Schutt ◽  
B Batge ◽  
...  

Recent studies suggest that high glucose concentrations impair insulin receptor phosphorylation and kinase activation in certain cell models. To examine whether such an effect of glucose can also be demonstrated in vivo, insulin receptor kinase activation was studied in erythrocytes from 11 patients with non-insulin-dependent diabetes (NIDDM), before and after reduction of hyperglycemia (from 14.6+/-1.6 to 6.6+/-0.5 mmol/l fasting plasma glucose within 8.6+/-0.6 days). For the measurement of receptor kinase activation, cells were incubated with insulin (0-400 nmol/l), solubilized and insulin receptors immobilized to microwells coated with anti-insulin receptor antibody. Kinase activity towards insulin receptor substrate-1 and insulin binding were then measured in these wells. Kinase activities (expressed as amol phosphate transferred per min and per fmol insulin binding activity) were similar before (2.4+/-0.4 and 32.2+/-2.0 amol/min per fmol with 0 and 400 nmol/l insulin, respectively) and after improvement of metabolic control (2.4+/-0.5 and 32.0+/-2.3 amol/min per fmol with 0 and 400 nmol/l insulin, respectively). Moreover, activities were also similar in 22 hyperglycemic patients with NIDDM (2.1+/-0.3 and 35.1+/-1.4 amol/min per fmol with 0 and 400 nmol/l insulin, respectively) compared with those in 21 non-diabetic control individuals (2.1+/-0.3 and 34.2+/-1.2 amol/min per fmol with 0 and 400 nmol/l insulin, respectively). We conclude that insulin activation of erythrocyte insulin receptor kinase is not impaired in NIDDM and is not influenced by hyperglycemia.


1989 ◽  
Vol 264 (22) ◽  
pp. 12931-12940 ◽  
Author(s):  
M N Khan ◽  
G Baquiran ◽  
C Brule ◽  
J Burgess ◽  
B Foster ◽  
...  

Diabetes ◽  
1984 ◽  
Vol 33 (9) ◽  
pp. 901-906 ◽  
Author(s):  
J. Levy ◽  
J. R. Gavin ◽  
A. Fausto ◽  
R. L. Gingerich ◽  
L. V. Avioli

Endocrinology ◽  
1999 ◽  
Vol 140 (9) ◽  
pp. 4244-4250 ◽  
Author(s):  
Denis Furling ◽  
André Marette ◽  
Jack Puymirat

Abstract Primary human skeletal muscle cell cultures derived from muscles of a myotonic dystrophy (DM) fetus provided a model in which both resistance to insulin action described in DM patient muscles and the potential ability of insulin-like growth factor I (IGF-I) to circumvent this defect could be investigated. Basal glucose uptake was the same in cultured DM cells as in normal myotubes. In DM cells, a dose of 10 nm insulin produced no stimulatory effect on glucose uptake, and at higher concentrations, stimulation of glucose uptake remained significantly lower than that in normal myotubes. In addition, basal and insulin-mediated protein synthesis were both significantly reduced compared with those in normal cells. In DM myotubes, insulin receptor messenger RNA expression and insulin receptor binding were significantly diminished, whereas the expression of GLUT1 and GLUT4 glucose transporters was not affected. These results indicate that impaired insulin action is retained in DM cultured myotubes. The action of recombinant human IGF-I (rhIGF-I) was evaluated in this cellular model. We showed that rhIGF-I is able to stimulate glucose uptake to a similar extent as in control cells and restore normal protein synthesis level in DM myotubes. Thus, rhIGF-I is able to bypass impaired insulin action in DM myotubes. This provides a solid foundation for the eventual use of rhIGF-I as an effective treatment of muscle weakness and wasting in DM.


Sign in / Sign up

Export Citation Format

Share Document