insulin receptor signaling
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 40)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Giovanna Grigolon ◽  
Elisa Araldi ◽  
Reto Erni ◽  
Jia Yee Wu ◽  
Carolin Thomas ◽  
...  

AbstractAging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.


2021 ◽  
Vol 9 (12) ◽  
pp. 2421
Author(s):  
Chen-Hsun Ho ◽  
Shih-Ping Liu ◽  
Chia-Kwung Fan ◽  
Kai-Yi Tzou ◽  
Chia-Chang Wu ◽  
...  

Diabetic individuals have a higher incidence of urinary tract infection (UTI) than non-diabetic individuals, and also require longer treatment. We evaluated the effects of insulin pretreatment on the regulation of JAK/STAT transduction pathways in UPEC-infected bladder cells in a high-glucose environment. A bladder cell model with GFP-UPEC and fluorescent-labeled TLR4, STAT1, STAT3, and insulin receptor antibodies, was used to evaluate the relationship between insulin receptor signaling, TLR-4-mediated, and JAK/STAT-dependent pathways. Pretreatment with 20 and 40 µg/mL insulin for 24 h significantly and dose-dependently reduced UPEC infection in SV-HUC-1 cells. Additionally, the expression levels of STAT1 and STAT3 were downregulated in a dose-dependent manner. However, insulin receptor (IR) expression was not affected by insulin pretreatment. Our results showed that insulin-mediated reduction of UPEC infection in a high-glucose environment was not only due to the downregulation of JAK1/2 and phosphorylated STAT-1/3, but also because of the decreased expression of TLR-4 proteins and pro-inflammatory IL-6. Here, we demonstrated that insulin reduced not only UPEC infection in bladder epithelial cells, but also inhibited the JAK/STAT transduction pathway during infection in a high-glucose environment. This study provides evidence to support the use of insulin in the treatment of UPEC infection in patients with type 2 diabetes (T2D).


Author(s):  
Anni M. Y. Zhang ◽  
Jenny C. C. Yang ◽  
Twan J. J. de Winter ◽  
David F. Schaeffer ◽  
Janel L. Kopp ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ye Li ◽  
Kui-Fang Xie ◽  
Ya-Hong Chang ◽  
Cheng Wang ◽  
Ying Chen ◽  
...  

Background: Endogenous hydrogen sulfide (H2S) is emerging as a key signal molecule in the development of diabetic cardiomyopathy. The aim of this study was to explore the effect and underlying mechanism of S-propargyl-cysteine (SPRC), a novel modulator of endogenous H2S, on diabetic cardiomyopathy in db/db diabetic mice.Methods and Results: Vehicle or SPRC were orally administered to 8-month-old male db/db mice and their wild type littermate for 12 weeks. SPRC treatment ameliorated myocardial hypertrophy, fibrosis, and cardiac systolic dysfunction assessed by histopathological examinations and echocardiography. The functional improvement by SPRC was accompanied by a reduction in myocardial lipid accumulation and ameliorated plasma lipid profiles. SPRC treatment improved glucose tolerance in db/db mice, with fasting blood glucose and peripheral insulin resistance remaining unchanged. Furthermore, insulin receptor signaling involving the phosphorylation of protein kinase B (Akt/PKB) and glycogen synthase kinase 3β (GSK3β) were elevated and activated by SPRC treatment. Primary neonatal mice cardiomyocytes were cultured to explore the mechanisms of SPRC on diabetic cardiomyopathy in vitro. Consistent with the results in vivo, SPRC not only up-regulated insulin receptor signaling pathway in cardiomyocytes in dose-dependent manner in the basal state, but also relieved the suppression of insulin receptor signaling induced by high concentrations of glucose and insulin. Furthermore, SPRC also enhanced the expression of glucose transporter 4 (GLUT4) and 3H glucose uptake in cardiomyocytes.Conclusions: In this study, we found a novel beneficial effect of SPRC on diabetic cardiomyopathy, which was associated with activation of insulin receptor signaling. SPRC may be a promising medication for diabetic cardiomyopathy in type 2 diabetes mellitus patients.


2021 ◽  
Vol 9 (3) ◽  
pp. 56
Author(s):  
Steven Nguyen ◽  
William A. Banks ◽  
Elizabeth M. Rhea

Rapamycin is an exogenous compound that has been shown to improve cognition in Alzheimer’s disease mouse models and can regulate pathways downstream of the insulin receptor signaling pathway. Insulin is also known to improve cognition in rodent models of Alzheimer’s disease. Central nervous system (CNS) insulin must first cross the blood–brain barrier (BBB), a specialized network of brain endothelial cells. This transport process is regulated by physiological factors, such as insulin itself, triglycerides, cytokines, and starvation. Since rapamycin treatment can alter the metabolic state of rodents, increase the circulating triglycerides, and acts as a starvation mimetic, we hypothesized rapamycin could alter the rate of insulin transport across the BBB, providing a potential mechanism for the beneficial effects of rapamycin on cognition. Using young male and female CD-1 mice, we measured the effects of rapamycin on the basal levels of serum factors, insulin receptor signaling, vascular binding, and BBB pharmacokinetics. We found chronic rapamycin treatment was able to affect basal levels of circulating serum factors and endothelial cell insulin receptor signaling. In addition, while acute rapamycin treatment did affect insulin binding at the BBB, overall transport was unaltered. Chronic rapamycin slowed insulin BBB transport non-significantly (p = 0.055). These results suggest that rapamycin may not directly impact the transport of insulin at the BBB but could be acting to alter insulin signaling within brain endothelial cells, which can affect downstream signaling.


2021 ◽  
Vol 22 (13) ◽  
pp. 6817
Author(s):  
Tomoko Okuyama ◽  
Mayu Kyohara ◽  
Yasuo Terauchi ◽  
Jun Shirakawa

It has been well established that insulin-like growth factors (IGFs) mainly mediate long-term actions in cell fates, whereas insulin predominantly exerts its role on metabolic activity. Indeed, insulin mediates multiple anabolic biological activities in glucose and amino acid transport, lipid and protein synthesis, the induction of glycogen, the inhibition of gluconeogenesis, lipolysis, and protein degradation. The interactions and differences between insulin receptor signaling and IGF-I receptor signaling in the metabolism and the cell fates are quite complicated. Because of the overlapping actions of IGF-I singling with insulin signaling, it has been difficult to distinguish the role of both signaling mechanisms on the metabolism. Furthermore, comprehensive information on the IGF-I function in respective tissues remains insufficient. Therefore, we need to clarify the precise roles of IGF-I signaling on the metabolism separate from those of insulin signaling. This review focuses on the metabolic roles of IGFs in the respective tissues, especially in terms of comparison with those of insulin, by overviewing the metabolic phenotypes of tissue-specific IGF-I and insulin receptor knockout mice, as well as those in mice treated with the dual insulin receptor/IGF-I receptor inhibitor OSI-906.


2021 ◽  
Author(s):  
Moataz Dowaidar

Insulin and IGF-1 signaling are found in nearly every cell in the body and are important for metabolism, development, and differentiation. Despite considerable progress, understanding the basic reason for abnormal insulin receptor signaling in type 2 diabetes, obesity, and metabolic syndrome remains a challenge. In the future decade, integrating several omics layers into a unique disease profile and translating these insights into novel and personalised therapies will be a big challenge.


2021 ◽  
Author(s):  
Sana Ahmed

The study of cell surface receptors and their associated signaling pathways on the plasma membrane are vital in understanding cellular responses. The insulin receptor is a tyrosine kinase that is activated in response to insulin microbeads presented to three mammalian cell lines: CHO, NIH-3T3 and COS-7. Phosphatidylinositol 3-kinase (PI3K) signaling, a major insulin receptor signaling pathway, phosphorylates the 3-position hydroxyl group of the inositol ring of phosphatidylinositol-4,5-biphosphate, resulting in phosphatidylinositol-3,4,5-triphosphate (PIP3) that acts by recruiting specific pleckstrin homology (PH) domain containing proteins to cell membranes. Akt (protein kinase B) containing PH domain gets activated, binds to PIP3 and localizes to the site of receptor activation. The PH domain of Akt was fused to green fluorescent protein (GFP) to create a biosensor for phosphatidylinositol. Confocal microscopy confirmed Akt-PH recruitment to the cell membrane. Immunofluorescence staining (IF) and western blots confirmed insulin receptor and phosphotyrosine activity in cells. The activated insulin receptor complex was captured and isolated by insulin coated microbeads on the surface of cells.


Sign in / Sign up

Export Citation Format

Share Document