Sustained stimulation of aldosterone production by angiotensin II is potentiated by nickel

1990 ◽  
Vol 258 (4) ◽  
pp. E555-E561 ◽  
Author(s):  
A. Spat ◽  
I. Balla ◽  
T. Balla ◽  
P. Enyedi ◽  
G. Hajnoczky ◽  
...  

Angiotensin-induced aldosterone production by superfused adrenal glomerulosa cells was potentiated by Ni2+ (0.1 mM), added either at the onset of stimulation with angiotensin II or 1 h later. Nickel did not influence the effect of adrenocorticotropic hormone or potassium on aldosterone production. Nickel failed to modify angiotensin-induced changes in phospholipid metabolism or the formation of inositol phosphates and slightly reduced the enhancement of 45Ca influx. Uptake of Ni2+ into glomerulosa cells was increased by depolarization in a dihydropyridine-insensitive manner. Because nickel selectively potentiates the sustained phase of the response to a calcium-mobilizing hormone, it may serve as a suitable tool in elucidating the signal transduction process during the sustained phase of stimulation.

1986 ◽  
Vol 110 (3) ◽  
pp. 405-416 ◽  
Author(s):  
P. J. Hyatt ◽  
J. B. G. Bell ◽  
K. Bhatt ◽  
F. W. Chu ◽  
J. F. Tait ◽  
...  

ABSTRACT Results on the effects of peptides on the phospholipid metabolism and steroid and cyclic AMP (cAMP) outputs of rat adrenal capsular cells (96% zona glomerulosa, 4% zona fasciculata) were obtained in a series of three batch experiments. Their significance was examined by analysis of variance. Incorporation of [32P] into phosphatidylcholine, phosphatidic acid and phosphatidylinositol was measured. Production of [3H]inositol-1 monophosphate, inositol-1,4 bis-phosphate and inositol-1,4,5 tris-phosphate was estimated after prelabelling with [3H]inositol followed by 1 min incubation with a steroidogenic stimulus. Angiotensin II (0·25 nmol/l to 0·25 μmol/l) highly significantly (P < 0·01) stimulated aldosterone and corticosterone outputs, [32P] incorporation into phosphatidic acid and phosphatidylinositol (but not into phosphatidylcholine) and the production of the three [3H]inositol phosphates. Aldosterone and corticosterone outputs were stimulated by α-MSH (above 0·1 nmol/l). However, incorporation of [32P] was not significantly increased until 10 μmol α-MSH/l but, unlike with angiotensin II, incorporation into phosphatidylcholine was also then stimulated. Also, the production of the inositol phosphates was not increased significantly (P > 0·05) by any dose of α-MSH (10 nmol/l, 1 μmol/l and 0·1 mmol/l) used. Therefore, it can be concluded that α-MSH does not stimulate phospholipase C in rat zona glomerulosa cells. In further experiments, it was also found that there were significant increases in cAMP as well as in steroid outputs above 1 nmol α-MSH/l (highly significant above 10 nmol α-MSH/l). There were plateaux of the outputs of both steroids and cAMP from 0·1 to 1 μmol α-MSH/l. However, there were further increases in steroid and cAMP outputs of the capsular cells at higher doses. Concomitant results on the stimulation of corticosterone output by zona fasciculata–reticularis cells indicate that this additional increase was mostly due to the stimulation of the contaminating zona fasciculata cells. It was also confirmed that α-MSH preferentially stimulates steroidogenesis by the zona glomerulosa. However, under our conditions, α-MSH highly significantly increased the output of cAMP by both zona fasciculata and glomerulosa cells. J. Endocr. (1986) 110, 405–416


1988 ◽  
Vol 254 (6) ◽  
pp. C744-C750 ◽  
Author(s):  
L. Hunyady ◽  
S. Kayser ◽  
E. J. Cragoe ◽  
I. Balla ◽  
T. Balla ◽  
...  

Sodium uptake by rat adrenal glomerulosa cells was stimulated by intracellular acidosis evoked by Na+-propionate. This process was inhibited by 5-(N,N-hexamethylene) amiloride (HMA), a known inhibitor of the Na+-H+ exchange. These experiments demonstrate the existence of the Na+-H+ exchange in glomerulosa cells. Although amiloride inhibited the angiotensin II- and adrenocorticotropic hormone (ACTH)-induced aldosterone response, HMA, a more specific inhibitor of Na+-H+ exchange, failed to do that. 45Ca2+ influx and efflux were dependent on intra- and extracellular Na+ concentrations. Amiloride analogues, known to inhibit Na+-Ca2+ exchange, reduced basal 45Ca influx. Although we could not reveal the activation of Na+-Ca2+ exchange by angiotensin II, inhibitors of Na+-Ca2+ exchange also inhibited the angiotensin- and ACTH-induced aldosterone response of glomerulosa cells. Our results suggest that Na+-Ca2+ exchange supports the maintenance of basal Ca2+ level in the cytoplasma of glomerulosa cells, and amiloride derivatives inhibit aldosterone production by reducing Ca2+ level below resting values.


1993 ◽  
Vol 265 (2) ◽  
pp. E179-E183 ◽  
Author(s):  
E. N. Cozza ◽  
C. E. Gomez-Sanchez

Endothelin-1 (ET-1) exerts the following two types of aldosterone-stimulating actions on glomerulosa cells: ET-1-mediated direct stimulation of aldosterone secretion (per se effect) and potentiation of the aldosterone secretion to angiotensin II (ANG II; potentiation effect). The role of Ca2+ and protein kinase C (PKC) systems in these two effects was investigated. Incubations of calf cultured adrenal zona glomerulosa cells in low-Ca2+ media or in the presence of the Ca2+ channel antagonist verapamil reduced the aldosterone secretion to ET-1. When cells were preincubated with ET-1 in a low-Ca2+ media or in the presence of the Ca2+ channel antagonist verapamil, washed, and incubated in media with normal Ca2+, ANG II showed potentiation of ANG II-stimulated aldosterone secretion. The PKC inhibitors H-7 and staurosporine did not decrease ET-1-stimulated aldosterone secretion, but they inhibited the potentiation effect of ET-1 on ANG II-mediated aldosterone secretion. Adrenocorticotropic hormone desensitization or prolonged phorbol ester stimulation of PKC resulting in desensitization also resulted in the abolition of the ET-1-mediated ANG II potentiation of aldosterone secretion. The PKC inhibitors did not affect ANG II-stimulated aldosterone secretion. We conclude that ET-1 exerts a direct stimulation of aldosterone secretion through a mechanism dependent on Ca2+ and potentiates ANG II-mediated aldosterone stimulation through a mechanism involving PKC.


Endocrinology ◽  
1992 ◽  
Vol 130 (3) ◽  
pp. 1637-1644 ◽  
Author(s):  
G Hajnóczky ◽  
G Csordás ◽  
L Hunyady ◽  
M P Kalapos ◽  
T Balla ◽  
...  

1996 ◽  
Vol 270 (1) ◽  
pp. E27-E35 ◽  
Author(s):  
M. Tamura ◽  
D. W. Piston ◽  
M. Tani ◽  
M. Naruse ◽  
E. J. Landon ◽  
...  

To evaluate the potential physiological significance of ouabain or a ouabainlike substance, we investigated the effect of nanomolar concentrations of ouabain on aldosterone release by cultured bovine adrenal glomerulosa cells. Ouabain (10 nM) increased aldosterone release from 0.35 to 0.89 ng.mg-1.4 h-1 in the serum-containing medium. Losartan prevented this increase. When angiotensinogen was added to the nonserum medium, 10 nM ouabain enhanced the aldosterone release. Losartan again blocked the increase. These findings together with a stimulation of renin release by ouabain indicate that angiotensin II generated by the adrenal cell renin-angiotensin system in the presence of exogenous serum or exogenous angiotensinogen is necessary for the ouabain-induced stimulation of aldosterone release. Ouabain (10 nM) enhanced the intracellular calcium concentration increase elicited by 0.1 nM angiotensin II severalfold. Addition of 1 nM ouabain enhanced the aldosterone secretion resulting from the addition of 1 nM angiotensin II. Nanomolar levels of ouabain, therefore, interact with both locally formed and exogenous angiotensin II to stimulate aldosterone production. A suggested mechanism is that ouabain increases calcium stores in the endoplasmic reticulum, thereby increasing the agonist response.


1992 ◽  
Vol 262 (1) ◽  
pp. R85-R89 ◽  
Author(s):  
E. N. Cozza ◽  
S. Chiou ◽  
C. E. Gomez-Sanchez

Endothelin-1 (ET-1) binds to specific receptors in cultured bovine adrenal glomerulosa cells and stimulates aldosterone secretion with a 50% effective concentration (EC50) of 300 +/- 80 pM (mean +/- SE). The relative stimulatory potency for ET-1 is significantly less than that of angiotensin II (ANG II). The incubation of calf zona glomerulosa cells in primary culture with ET-1 and ANG II resulted in a significant potentiation of ANG II effect on aldosterone secretion. The EC50 of ET-1 potentiation of ANG II-induced stimulation of aldosterone secretion was 40 +/- 5 pM (mean +/- SE, n = 4), which is lower than the EC50 for ET-1 stimulation of aldosterone secretion. Adrenocorticotropic hormone (ACTH) stimulation of aldosterone secretion, but not that of potassium, was also potentiated by ET-1, but to a lesser degree. ET-1 and ET-1-mediated potentiation of ANG II-stimulated aldosterone biosynthesis increased both the early and late pathways of aldosterone biosynthesis, but the potentiation was greater for the early pathway. Preincubation with ET-1 for at least 15 min, followed by extensive washing to remove bound ET-1, also resulted in persistent potentiation of ANG II-mediated aldosterone secretion. ET-2, sarafotoxin, and vasoactive intestinal contractor potentiation of ANG II action were very similar to that of ET-1. ET-3 and Big-ET-1 potentiated ANG II stimulation only at the highest doses tested and the proendothelin-(110-130) fragment was inactive. ET-1 potentiation of ANG II action is likely to be mediated through an ETB receptor subtype.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 62 (04) ◽  
pp. 1116-1120 ◽  
Author(s):  
N Chetty ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

SummaryEicosapentaenoic acid (EPA) inhibits platelet responsiveness to aggregating agents. To investigate the reactions that are affected by EPA, we examined the effect of preincubating aspirintreated rabbit platelets with EPA on stimulation of inositol phosphate formation in response to the TXA2 analogue U46619. Stimulation of platelets with U46619 (0.5 μM) caused aggregation and slight release of dense granule contents; aggregation and release were inhibited by preincubation of the platelets with EPA (50 μM) for 1 h followed by washing to remove unincorporated EPA. Incubation with EPA (50 μM) for 1 h did not cause a detectable increase in the amount of EPA in the platelet phospholipids. When platelets were prelabelled with [3H]inositol stimulation with U46619 of control platelets that had not been incubated with EPA significantly increased the labelling of mos1tol phosphates. The increases in inositol phosphate labelling due to U46619 at 10 and 60 s were partially inhibited by premcubat10n of the platelets with 50 μM EPA. Since the activity of cyclo-oxygenase was blocked with aspirin, inhibition of inositol phosphate labelling in response to U46619 indicates either that there may be inhibition of signal transduction without a detectable change in the amount of EPA in platelet phospholipids, that changes in signal transduction require only minute changes in the fatty acid composition of membrane phospholipids, or that after a 1 h incubation with EPA, activation of phospholipase C is affected by a mechanism that is not directly related to incorporation of EPA.


Sign in / Sign up

Export Citation Format

Share Document