Immunomagnetic enrichment of interstitial cells of Cajal

2004 ◽  
Vol 286 (2) ◽  
pp. G351-G360 ◽  
Author(s):  
Tamás Ördög ◽  
Doug Redelman ◽  
Nancy N. Horowitz ◽  
Kenton M. Sanders

Disruptions of networks of interstitial cells of Cajal (ICC), gastrointestinal pacemakers and mediators of neurotransmission, can lead to disordered phasic contractions and peristalsis by reducing and uncoupling electrical slow waves. However, detailed analysis of the ICC network behavior has been hampered by their scarcity, limited accessibility in intact tissues, and contamination with other cell types in culture. Our goal was to develop a simple technique to purify ICC from murine gastrointestinal muscles for functional studies. We identified ICC in live small intestinal muscles or primary cell cultures by Kit immunoreactivity using fluorescent antibodies. Because this technique also labels resident macrophages nonspecifically, parallel studies were performed in which nonfluorescent Kit antibodies and macrophages labeled with fluorescent dextran were used for subtractive analysis of ICC. In both groups, Kit-positive cells were tagged with superparamagnetic antibodies and sorted on magnetic columns. Efficacy was assessed by flow cytometry. ICC enrichment from primary cultures and freshly dissociated tissues was ∼63-fold and ∼8-fold, respectively. Unlike the cells derived directly from tissues, cells sorted from cultures frequently yielded extensive, nearly homogenous ICC networks on reseeding. Monitoring oscillations in mitochondrial Ca2+ or membrane potential by imaging revealed spontaneous rhythmicity in these networks. Cells that did not bind to the columns yielded cultures that were depleted of ICC and dominated by smooth muscle cells. In conclusion, immunomagnetic sorting of primary cultures of ICC results in relatively homogenous, functional ICC networks. This technique is less suitable for obtaining ICC from freshly dispersed cells.

2001 ◽  
Vol 120 (5) ◽  
pp. A201-A201 ◽  
Author(s):  
P STREGE ◽  
A RICH ◽  
Y OU ◽  
S GIBBONS ◽  
M SARR ◽  
...  

2007 ◽  
Vol 292 (3) ◽  
pp. G734-G745 ◽  
Author(s):  
E. E. Daniel ◽  
Ahmed El Yazbi ◽  
Marco Mannarino ◽  
Gary Galante ◽  
Geoffrey Boddy ◽  
...  

Varicosities of nitrergic and other nerves end on deep muscular plexus interstitial cells of Cajal or on CD34-positive, c- kit-negative fibroblast-like cells. Both cell types connect to outer circular muscle by gap junctions, which may transmit nerve messages to muscle. We tested the hypotheses that gap junctions transmit pacing messages from interstitial cells of Cajal of the myenteric plexus. Effects of inhibitors of gap junction conductance were studied on paced contractions and nerve transmissions in small segments of circular muscle of mouse intestine. Using electrical field stimulation parameters (50 V/cm, 5 pps, and 0.5 ms) which evoke near maximal responses to nitrergic, cholinergic, and apamin-sensitive nerve stimulation, we isolated inhibitory responses to nitrergic nerves, inhibitory responses to apamin-sensitive nerves and excitatory responses to cholinergic nerves. 18β-Glycyrrhetinic acid (10, 30, and 100 μM), octanol (0.1, 0.3, and 1 mM) and gap peptides (300 μM of40Gap27,43Gap26,37,43Gap27) all failed to abolish neurotransmission. 18β-Glycyrrhetinic acid inhibited frequencies of paced contractions, likely owing to inhibition of l-type Ca2+channels in smooth muscle, but octanol or gap peptides did not. 18β-Glycyrrhetinic acid and octanol, but not gap peptides, reduced the amplitudes of spontaneous and nerve-induced contractions. These reductions paralleled reductions in contractions to exogenous carbachol. Additional experiments with gap peptides in both longitudinal and circular muscle segments after NG-nitro-l-arginine and TTX revealed no effects on pacing frequencies. We conclude that gap junction coupling may not be necessary for pacing or nerve transmission to the circular muscle of the mouse intestine.


2008 ◽  
Vol 294 (3) ◽  
pp. F645-F655 ◽  
Author(s):  
Louise Johnston ◽  
Chris Carson ◽  
Alan D. Lyons ◽  
Ross A. Davidson ◽  
Karen D. McCloskey

Acetylcholine released from parasympathetic excitatory nerves activates contraction in detrusor smooth muscle. Immunohistochemical labeling of guinea pig detrusor with anti- c-Kit and anti-VAChT demonstrated a close structural relationship between interstitial cells of Cajal (ICC) and cholinergic nerves. The ability of guinea pig bladder detrusor ICC to respond to the acetylcholine analog, carbachol, was investigated in enzymatically dissociated cells, loaded with the Ca2+ indicator fluo 4AM. ICC fired Ca2+ transients in response to stimulation by carbachol (1/10 μM). Their pharmacology was consistent with carbachol-induced contractions in strips of detrusor which were inhibited by 4-DAMP (1 μM), an M3 receptor antagonist, but not by the M2 receptor antagonist methoctramine (1 μM). The source of Ca2+ underlying the carbachol transients in isolated ICC was investigated using agents to interfere with influx or release from intracellular stores. Nifedipine (1 μM) or Ni2+ (30–100 μM) to block Ca2+ channels or the removal of external Ca2+ reduced the amplitude of the carbachol transients. Application of ryanodine (30 μM) or tetracaine (100 μM) abolished the transients. The phospholipase C inhibitor, U-73122 (2.5 μM), significantly reduced the responses. 2-Aminoethoxydiethylborate (30 μM) caused a significant reduction and Xestospongin C (1 μM) was more effective, almost abolishing the responses. Intact in situ preparations of guinea pig bladder loaded with a Ca2+ indicator showed distinctively different patterns of spontaneous Ca2+ events in smooth muscle cells and ICC. Both cell types responded to carbachol by an increase in frequency of these events. In conclusion, guinea pig bladder detrusor ICC, both as isolated cells and within whole tissue preparations, respond to cholinergic stimulation by firing Ca2+ transients.


2001 ◽  
Vol 120 (5) ◽  
pp. A201 ◽  
Author(s):  
Peter R. Strege ◽  
Adam J. Rich ◽  
Yijun Ou ◽  
Simon J. Gibbons ◽  
Michael G. Sarr ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2887-2899 ◽  
Author(s):  
Seok Choi ◽  
Hyun Goo Kang ◽  
Mei Jin Wu ◽  
Han Yi Jiao ◽  
Dong Hoon Shin ◽  
...  

Background/Aims: Anoctamin1 (Ca2+-activated Cl- channel, ANO1) is a specific marker of the interstitial cells of Cajal (ICC) in the gastrointestinal tract, and are candidate proteins that can function as pacemaker channels. Recently, novel selective ANO1 inhibitors were discovered and used to study Ca2+-activated Cl- channels. Therefore, to investigate whether ANO1 channels function as pacemaker channels, selective ANO1 inhibitors were tested with respect to the pacemaker potentials in ICC. Methods: Whole-cell patch-clamp recording, RT-PCR, and intracellular Ca2+ ([Ca2+]i) imaging were performed in cultured ICC obtained from mice. Results: Though CaCCinh-A01 (5 µM), T16Ainh-A01 (5 µM), and MONNA (5 µM) (selective ANO1 inhibitors) blocked the generation of pacemaker potentials in colonic ICC, they did not do so in small intestinal ICC. Though nifulmic acid (10 µM) and DIDS (10 µM) (classical Ca2+-activated Cl- channel inhibitors) also had no effect in small intestinal ICC, they suppressed the generation of pacemaker potentials in colonic ICC. In addition, knockdown of ANO1 reduced the pacemaker potential frequency in colonic ICC alone. Though ANO1 inhibitors suppressed [Ca2+]i oscillations in colonic ICC, they did not do so in small intestinal ICC. T-type Ca2+ channels were expressed in the both the small intestinal and colonic ICC, but mibefradil (5 µM) and NiCl2 (30 µM) (T-type Ca2+ channel inhibitors) inhibited the generation of pacemaker potentials in colonic ICC alone. Conclusion: These results indicate that though ANO1 and T-type Ca2+ channels participate in generating pacemaker potentials in colonic ICC, they do not do so in small intestinal ICC. Therefore, the mechanisms underlying pacemaking in ICC might be different in the small intestine and the colon.


2014 ◽  
Vol 307 (1) ◽  
pp. G98-G106 ◽  
Author(s):  
Barbara Lies ◽  
Víctor Gil ◽  
Dieter Groneberg ◽  
Barbara Seidler ◽  
Dieter Saur ◽  
...  

Nitric oxide (NO) is a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. Its main effector, NO-sensitive guanylyl cyclase (NO-GC), is expressed in several GI cell types, including smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and fibroblast-like cells. Up to date, the interplay between neurons and these cells to initiate a nitrergic inhibitory junction potential (IJP) is unclear. Here, we investigate the origin of the nitrergic IJP in murine fundus and colon. IJPs were determined in fundus and colon SMC of mice lacking NO-GC globally (GCKO) and specifically in SMC (SM-GCKO), ICC (ICC-GCKO), and both SMC/ICC (SM/ICC-GCKO). Nitrergic IJP was abolished in ICC-GCKO fundus and reduced in SM-GCKO fundus. In the colon, the amplitude of nitrergic IJP was reduced in ICC-GCKO, whereas nitrergic IJP in SM-GCKO was reduced in duration. These results were corroborated by loss of the nitrergic IJP in global GCKO. In conclusion, our results prove the obligatory role of NO-GC in ICC for the initiation of an IJP. NO-GC in SMC appears to enhance the nitrergic IJP, resulting in a stronger and prolonged hyperpolarization in fundus and colon SMC, respectively. Thus NO-GC in both cell types is mandatory to induce a full nitrergic IJP. Our data from the colon clearly reveal the nitrergic IJP to be biphasic, resulting from individual inputs of ICC and SMC.


Sign in / Sign up

Export Citation Format

Share Document