mouse intestine
Recently Published Documents


TOTAL DOCUMENTS

492
(FIVE YEARS 56)

H-INDEX

59
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Baifa Sheng ◽  
Yihui Chen ◽  
Lihua Sun ◽  
Peng Xu ◽  
Ben Han ◽  
...  

Prophylactic antifungal therapy is widely adopted clinically for critical patients and effective in reducing the morbidity of invasive fungal infection and improves outcomes of those diagnosed patients; however, it is not associated with higher overall survival. As intestinal commensal fungi play a fundamental role in the host immune response in health and disease, we propose that antifungal therapy may eliminate intestinal fungi and aggravate another critical syndrome, sepsis. Here, with murine sepsis model, we found that antifungal therapy with fluconazole dismissed intestinal fungal burden and aggravated endotoxin-induced but no gram-positive bacteria-induced sepsis. Nevertheless, antifungal therapy did not exert its detrimental effect on germ-free mice. Moreover, colonizing more commensal fungi in the mouse intestine or administration of fungal cell wall component mannan protected the mice from endotoxin-induced sepsis. On the molecular level, we demonstrated that antifungal therapy aggravated endotoxin sepsis through promoting Gasdermin D cleavage in the distal small intestine. Intestinal colonization with commensal fungi inhibited Gasdermin D cleavage in response to lipopolysaccharide challenge. These findings show that intestinal fungi inhibit Gasdermin D-mediated pyroptosis and protect the mice from endotoxin-induced sepsis. This study demonstrates the protective role of intestinal fungi in the pathogenesis of endotoxin-induced sepsis in the laboratory. It will undoubtedly prompt us to study the relationship between antifungal therapy and sepsis in critical patients who are susceptible to endotoxin-induced sepsis in the future.


Author(s):  
Zidong Donna Fu ◽  
Felcy Pavithra Selwyn ◽  
Julia Yue Cui ◽  
Curtis D. Klaassen

Author(s):  
Kimberly S. Vasquez ◽  
Lisa Willis ◽  
Nate J. Cira ◽  
Katharine M. Ng ◽  
Miguel F. Pedro ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Xue ◽  
Lingyu Bao ◽  
Julia Roediger ◽  
Yijun Su ◽  
Bingyin Shi ◽  
...  

Abstract Background Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse. Methods We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium. Results We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged. Conclusions Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1778
Author(s):  
Bo-Ram Kwon ◽  
Bai Wei ◽  
Se-Yeoun Cha ◽  
Ke Shang ◽  
Jun-Feng Zhang ◽  
...  

A total of 136 Salmonella isolates from chicken feces and meat samples of the top 12 integrated chicken production companies throughout Korea were collected. Among the 17 ESC-resistant Salmonella; blaCTX-M-15 was the most prevalent gene and two strains carried blaTEM-1/blaCTX-M-15 and blaCMY-2, respectively. The transferable blaCTX-M-15 gene was carried by IncFII plasmid in three isolates and the blaCMY-2 gene carried by IncI1 plasmid in one isolate. blaCMY-2 gene-harboring strain was selected as the donor based on the high frequency of blaCMY-2 gene transfer in vitro and its transfer frequencies were determined at 10−3 transconjugants per recipient. The transfer of blaCMY-2 gene-harboring plasmid derived from chicken isolate into a human pathogen; enteroinvasive Escherichia coli (EIEC), presented in mouse intestine with about 10−1 transfer frequency without selective pressure. From the competition experiment; blaCMY-2 gene-harboring transconjugant showed variable fitness burden depends on the parent strains. Our study demonstrated direct evidence that the blaCMY-2 gene harboring Salmonella from chicken could frequently transfer its ESC-resistant gene to E. coli in a mouse intestine without antimicrobial pressure; resulting in the emergence of multidrug resistance in potentially virulent EIEC isolates of significance to human health; which can increase the risk of therapeutic inadequacy or failures.


Author(s):  
Robyn Laura Kosinsky ◽  
Maria Zerche ◽  
Ana Patricia Kutschat ◽  
Asha Nair ◽  
Zhenqing Ye ◽  
...  

AbstractDespite the identification of several genetic factors linked to increased susceptibility to inflammatory bowel disease (IBD), underlying molecular mechanisms remain to be elucidated in detail. The ubiquitin ligases RNF20 and RNF40 mediate the monoubiquitination of histone H2B at lysine 120 (H2Bub1) and were shown to play context-dependent roles in the development of inflammation. Here, we aimed to examine the function of the RNF20/RNF40/H2Bub1 axis in intestinal inflammation in IBD patients and mouse models. For this purpose, intestinal sections from IBD patients were immunohistochemically stained for H2Bub1. Rnf20 or Rnf40 were conditionally deleted in the mouse intestine and mice were monitored for inflammation-associated symptoms. Using mRNA-seq and chromatin immunoprecipitation (ChIP)-seq, we analyzed underlying molecular pathways in primary intestinal epithelial cells (IECs) isolated from these animals and confirmed these findings in IBD resection specimens using ChIP-seq.The majority (80%) of IBD patients displayed a loss of H2Bub1 levels in inflamed areas and the intestine-specific deletion of Rnf20 or Rnf40 resulted in spontaneous colorectal inflammation in mice. Consistently, deletion of Rnf20 or Rnf40 promoted IBD-associated gene expression programs, including deregulation of various IBD risk genes in these animals. Further analysis of murine IECs revealed that H3K4me3 occupancy and transcription of the Vitamin D Receptor (Vdr) gene and VDR target genes is RNF20/40-dependent. Finally, these effects were confirmed in a subgroup of Crohn’s disease patients which displayed epigenetic and expression changes in RNF20/40-dependent gene signatures. Our findings reveal that loss of H2B monoubiquitination promotes intestinal inflammation via decreased VDR activity thereby identifying RNF20 and RNF40 as critical regulators of IBD.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Gabriel Tao ◽  
Romi Ghose
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document