Waxing and waning of slow waves in intestinal musculature

1986 ◽  
Vol 250 (1) ◽  
pp. G28-G34 ◽  
Author(s):  
N. Suzuki ◽  
C. L. Prosser ◽  
W. DeVos

Electrical slow waves from cat or rabbit small intestine show more variability when recorded in vivo than in vitro. One pattern of variation is waxing and waning of amplitude, or "spindling," during which two rhythms of slightly different frequency come in and out of phase. Fourier power analyses of slow waves during spindles show two frequency peaks of slow waves differing by 0.4-5.0 waves/min and corresponding to measured spindle durations of 12-150 s. Spindles can be induced in vitro in rabbit intestine by K depolarization of approximately 15 mV. Histograms of intracellular recordings of slow nonspindling waves show variation of 0.5-1.0 s on either side of a mean slow wave duration. Spindles are abolished by treatments that reduce electrical coupling between cells, e.g., hypertonic sucrose or lowered pH, but changes in calcium do not alter spindles. Simultaneous recordings by two electrodes in the longitudinal axis show synchrony of spindles at 2- to 3-mm but not at 5-mm separation and synchrony circumferentially to the opposite side of a segment. Contractions, both in vivo and in vitro, correspond with electrical spindles in amplitude. Spindle durations were significantly shorter in vivo than in vitro, indicating a significantly greater difference in vivo in the competing frequencies at the point of recording (P less than 0.01). Three conditions favoring waxing and waning are slight depolarization, variation in slow wave frequency at a point, and electrotonic coupling between muscle fibers. Spindles provide for rhythms of contractions of a 1- to 2-min period.

1999 ◽  
Vol 277 (2) ◽  
pp. G306-G313 ◽  
Author(s):  
Harold G. Preiksaitis ◽  
Nicholas E. Diamant

A myogenic control system (MCS) is a fundamental determinant of peristalsis in the stomach, small bowel, and colon. In the esophagus, attention has focused on neuronal control, the potential for a MCS receiving less attention. The myogenic properties of the cat esophagus were studied in vitro with and without nerves blocked by 1 μM TTX. Muscle contraction was recorded, while electrical activity was monitored by suction electrodes. Spontaneous, nonperistaltic, electrical, and mechanical activity was seen in the longitudinal muscle and persisted after TTX. Spontaneous circular muscle activity was minimal, and peristalsis was not observed without pharmacological activation. Direct electrical stimulation (ES) in the presence of bethanechol or tetraethylammonium chloride (TEA) produced slow-wave oscillations and spike potentials accompanying smooth muscle contraction that progressed along the esophagus. Increased concentrations of either drug in the presence of TTX produced slow waves and spike discharges, accompanied by peristalsis in 5 of 8 TEA- and 2 of 11 bethanechol-stimulated preparations without ES. Depolarization of the muscle by increasing K+ concentration also produced slow waves but no peristalsis. We conclude that the MCS in the esophagus requires specific activation and is manifest by slow-wave oscillations of the membrane potential, which appear to be necessary, but are not sufficient for myogenic peristalsis. In vivo, additional control mechanisms are likely supplied by nerves.


2020 ◽  
Vol 30 (6) ◽  
pp. 3451-3466 ◽  
Author(s):  
Trang-Anh E Nghiem ◽  
Núria Tort-Colet ◽  
Tomasz Górski ◽  
Ulisse Ferrari ◽  
Shayan Moghimyfiroozabad ◽  
...  

Abstract Sleep slow waves are known to participate in memory consolidation, yet slow waves occurring under anesthesia present no positive effects on memory. Here, we shed light onto this paradox, based on a combination of extracellular recordings in vivo, in vitro, and computational models. We find two types of slow waves, based on analyzing the temporal patterns of successive slow-wave events. The first type is consistently observed in natural slow-wave sleep, while the second is shown to be ubiquitous under anesthesia. Network models of spiking neurons predict that the two slow wave types emerge due to a different gain on inhibitory versus excitatory cells and that different levels of spike-frequency adaptation in excitatory cells can account for dynamical distinctions between the two types. This prediction was tested in vitro by varying adaptation strength using an agonist of acetylcholine receptors, which demonstrated a neuromodulatory switch between the two types of slow waves. Finally, we show that the first type of slow-wave dynamics is more sensitive to external stimuli, which can explain how slow waves in sleep and anesthesia differentially affect memory consolidation, as well as provide a link between slow-wave dynamics and memory diseases.


2018 ◽  
Author(s):  
Trang-Anh E Nghiem ◽  
Núria Tort-Colet ◽  
Tomasz Górski ◽  
Ulisse Ferrari ◽  
Shayan Moghimyfiroozabad ◽  
...  

AbstractSleep slow waves are known to participate in memory consolidation, yet slow waves occurring under anesthesia present no positive effects on memory. Here, we shed light onto this paradox, based on a combination of extracellular recordings in vivo, in vitro, and computational models. We find two types of slow waves, based on analyzing the temporal patterns of successive slow-wave events. The first type is consistently observed in natural slow-wave sleep, while the second is shown to be ubiquitous under anesthesia. Network models of spiking neurons predict that the two slow wave types emerge due to a different gain on inhibitory vs excitatory cells and that different levels of spike-frequency adaptation in excitatory cells can account for dynamical distinctions between the two types. This prediction was tested in vitro by varying adaptation strength using an agonist of acetylcholine receptors, which demonstrated a neuromodulatory switch between the two types of slow waves. Finally, we show that the first type of slow-wave dynamics is more sensitive to external stimuli, which can explain how slow waves in sleep and anesthesia differentially affect memory consolidation, as well as provide a link between slow-wave dynamics and memory diseases.


1990 ◽  
Vol 259 (2) ◽  
pp. G264-G273 ◽  
Author(s):  
S. M. Ward ◽  
K. M. Sanders

Morphological and electrophysiological experiments were performed to characterize the pacemaker areas of the circular muscle in the canine proximal colon. Morphological studies showed interstitial cells of Cajal lining the submucosal surface of the circular layer and the septal structures that separate the circular layer into bundles. Electrical measurements suggested that slow waves may propagate into the thickness of the circular muscle in a regenerative manner along the surface of these septa. Removal of the submucosal pacemaker region blocked generation of slow waves in nonseptal regions of the circular muscle, but slow-wave activity continued in the circular muscle near septa. These data suggest that slow-wave pacemaker activity is not limited to a two-dimensional surface at the submucosal surface but extends into the interior of the circular layer along septal invaginations. Experiments were also performed to determine the dominance of pacemaker activity (i.e., septal vs. submucosal), and examples were found in which both areas appeared to initiate slow waves in intact muscles. Other studies showed that slow waves could propagate across septa, suggesting some form of electrical coupling between circular muscle bundles. This study provides a more complete view of the structure and function of pacemaker areas in the canine proximal colon.


2020 ◽  
Vol 8 (11) ◽  
pp. 1780
Author(s):  
Anders Esberg ◽  
Angela Barone ◽  
Linda Eriksson ◽  
Pernilla Lif Holgerson ◽  
Susann Teneberg ◽  
...  

Corynebacterium matruchotii may be key in tooth biofilm formation, but information about demographics, bacterial partners, and binding ligands is limited. The aims of this study were to explore C. matruchotii’s demography by age and colonization site (plaque and saliva), in vitro bacterial–bacterial interactions in coaggregation and coadhesion assays, and glycolipids as potential binding ligands in thin-layer chromatogram binding assays. C. matruchotii prevalence increased from 3 months to 18 years old, with 90% and 100% prevalence in saliva and tooth biofilm, respectively. C. matruchotii aggregated in saliva in a dose-dependent manner but lacked the ability to bind to saliva-coated hydroxyapatite. In vivo, C. matruchotii abundance paralleled that of Actinomyces naeslundii, Capnocytophaga sp. HMT 326, Fusobacterium nucleatum subsp. polymorphum, and Tannerella sp. HMT 286. In vitro, C. matruchotii bound both planktonic and surface-bound A. naeslundii, Actinomyces odontolyticus, and F. nucleatum. In addition, C. matruchotii exhibited the ability to bind glycolipids isolated from human erythrocytes (blood group O), human granulocytes, rabbit intestine, human meconium, and rat intestine. Binding assays identified candidate carbohydrate ligands as isoglobotriaosylceramide, Galα3-isoglobotriaosylceramide, lactotriaosylceramide, lactotetraosylceramide, neolactotetraosylceramide, and neolactohexaosylceramide. Thus, C. matruchotii likely uses specific plaque bacteria to adhere to the biofilm and may interact with human tissues through carbohydrate interactions.


1992 ◽  
Vol 263 (2) ◽  
pp. G230-G239 ◽  
Author(s):  
M. J. Vassallo ◽  
M. Camilleri ◽  
C. M. Prather ◽  
R. B. Hanson ◽  
G. M. Thomforde

Our aim was to measure axial forces in the stomach and to evaluate their relation to circumferential contractions of the gastric walls and the emptying of gastric content. We used a combination of simultaneous radioscintigraphy, gastroduodenal manometry, and an axial force transducer with an inflatable 2-ml balloon fluoroscopically placed in the antrum. In vitro studies demonstrated that the axial force transducer records only antegrade forces along the longitudinal axis of this probe in an intensity-dependent manner. In vivo studies were performed in five healthy subjects for at least 3 h after ingestion of radiolabeled meals. When administered separately, the emptying of liquids or solids from the stomach is associated with generation of antral axial forces and coincident phasic pressure activity; however, almost 20% (average) of gastric axial forces during emptying of liquids or solids are unassociated with proximal or distal antral pressure activity ("isolated" forces). High amplitude antral axial forces and pressures occur during both lag and postlag emptying phases. During emptying of liquids, there is a trend for axial forces to be coincident more often with proximal than with distal antral pressure activity and vice versa for the emptying of solids (P = 0.015). These data suggest that when placed in the antrum, the transducer can semiquantitatively record axial forces during gastric emptying. By combining these observations with the data from in vitro studies, it appears that axial forces predominantly result from traction on the balloon by the longitudinal vector resulting from circumferential gastric contractions. The combination of radioscintigraphy and measurement of antral axial forces is a promising method to evaluate mechanical forces involved in the emptying of the human stomach.


2007 ◽  
Vol 292 (4) ◽  
pp. G1162-G1172 ◽  
Author(s):  
R. M. Gwynne ◽  
J. C. Bornstein

Mechanisms underlying nutrient-induced segmentation within the gut are not well understood. We have shown that decanoic acid and some amino acids induce neurally dependent segmentation in guinea pig small intestine in vitro. This study examined the neural mechanisms underlying segmentation in the circular muscle and whether the timing of segmentation contractions also depends on slow waves. Decanoic acid (1 mM) was infused into the lumen of guinea pig duodenum and jejunum. Video imaging was used to monitor intestinal diameter as a function of both longitudinal position and time. Circular muscle electrical activity was recorded by using suction electrodes. Recordings from sites of segmenting contractions showed they are always associated with excitatory junction potentials leading to action potentials. Recordings from sites oral and anal to segmenting contractions revealed inhibitory junction potentials that were time locked to those contractions. Slow waves were never observed underlying segmenting contractions. In paralyzed preparations, intracellular recording revealed that slow-wave frequency was highly consistent at 19.5 (SD 1.4) cycles per minute (c/min) in duodenum and 16.6 (SD 1.1) c/min in jejunum. By contrast, the frequencies of segmenting contractions varied widely (duodenum: 3.6–28.8 c/min, median 10.8 c/min; jejunum: 3.0–27.0 c/min, median 7.8 c/min) and sometimes exceeded slow-wave frequencies for that region. Thus nutrient-induced segmentation contractions in guinea pig small intestine do not depend on slow-wave activity. Rather they result from a neural circuit producing rhythmic localized activity in excitatory motor neurons, while simultaneously activating surrounding inhibitory motor neurons.


2000 ◽  
Vol 149 (4) ◽  
pp. 951-968 ◽  
Author(s):  
Dora Fitzli ◽  
Esther T. Stoeckli ◽  
Stefan Kunz ◽  
Kingsley Siribour ◽  
Christoph Rader ◽  
...  

An interaction of growth cone axonin-1 with the floor-plate NgCAM-related cell adhesion molecule (NrCAM) was shown to play a crucial role in commissural axon guidance across the midline of the spinal cord. We now provide evidence that axonin-1 mediates a guidance signal without promoting axon elongation. In an in vitro assay, commissural axons grew preferentially on stripes coated with a mixture of NrCAM and NgCAM. This preference was abolished in the presence of anti–axonin-1 antibodies without a decrease in neurite length. Consistent with these findings, commissural axons in vivo only fail to extend along the longitudinal axis when both NrCAM and NgCAM interactions, but not when axonin-1 and NrCAM or axonin-1 and NgCAM interactions, are perturbed. Thus, we conclude that axonin-1 is involved in guidance of commissural axons without promoting their growth.


1988 ◽  
Vol 66 (9) ◽  
pp. 1161-1165 ◽  
Author(s):  
Beverley Greenwood ◽  
Jan D. Huizinga ◽  
Edwin Chow ◽  
Wylie J. Dodds

The relationship between transmural potential difference (PD) and smooth muscle electrical and mechanical activity was investigated in the rabbit ileum in vitro. Transmural PD was monitored using agar salt bridge electrodes connected via calomel half cells to an electrometer. Force displacement transducers recorded predominantly longitudinal smooth muscle activity. Concurrently, predominantly circular muscle activity was recorded at three sites using intraluminal pressure probes. At the same sites, suction electrodes monitored electrical activity of the smooth muscle. In all experiments, fluctuations in transmural PD were temporally linked to smooth muscle mechanical and electrical activity. The frequency of PD oscillations, electrical slow waves, and cyclic pressure changes were identical within each segment. Adrenaline abolished smooth muscle electrical spiking, all mechanical activity, and transmural fluctuations in PD. However, the slow waves were not abolished, though their frequency was increased. Phentolamine but not propranolol reversed the effects of adrenaline, thus slow wave frequency is influenced by α-adrenergic stimulation in the rabbit ileum. In conclusion, oscillations in transmural PD are unrelated to the ionic processes associated with the slow wave. However, they are in some way linked to smooth muscle contractile activity, possibly via an intrinsic neural mechanism as observed in the guinea pig.


Sign in / Sign up

Export Citation Format

Share Document