Quantification of motor pathways to the pelvic floor in humans

1991 ◽  
Vol 260 (5) ◽  
pp. G720-G723 ◽  
Author(s):  
J. Herdmann ◽  
K. Bielefeldt ◽  
P. Enck

The motor innervation of the pelvic floor plays a major role in defecation disorders such as fecal incontinence. It consists of central motor pathways and peripheral nerve fibers. Transcranial magnetoelectric stimulation of the brain and magnetoelectric stimulation of the lumbosacral motor roots were performed in 10 healthy volunteers. Motor evoked potentials were recorded from the external anal sphincter. This procedure allowed differentiation between a predominantly central and a solely peripheral component of the motor innervation of the external and sphincter. To compare these recordings with well-established data, motor evoked potentials were also recorded from the anterior tibial muscle. The central motor conduction time was 20.9 +/- 2.4 ms to the external anal sphincter and 14.8 +/- 2.3 ms to the anterior tibial muscles. Central motor conduction velocities were 40.7 +/- 5.2 and 55.5 +/- 7.6 m/s, respectively. This showed that conduction in the central fibers to the external anal sphincter was significantly slower than in those to the anterior tibial muscle. We conclude 1) that magnetoelectric stimulation allows differentiation between central and peripheral portions of the motor innervation of the pelvic floor, and 2) that central motor pathways innervating the pelvic floor differ significantly in their physiological properties from those innervating limb muscles.

2004 ◽  
Vol 16 (2) ◽  
pp. E8 ◽  
Author(s):  
Karl F. Kothbauer ◽  
Klaus Novak

Object Intraoperative neurophysiological recording techniques have found increasing use in neurosurgical practice. The development of new recording techniques feasible while the patient receives a general anesthetic have improved their practical use in a similar way to the use of digital recording, documentation, and video technology. This review intends to provide an update on the techniques used and their validity. Methods Two principal methods are used for intraoperative neurophysiological testing during tethered cord release. Mapping identifies functional neural structures, namely nerve roots, and monitoring provides continuous information on the functional integrity of motor and sensory pathways as well as reflex circuitry. Mapping is performed mostly by using direct electrical stimulation of a structure within the surgical field and recording at a distant site, usually a muscle. Sensory mapping can also be performed with peripheral stimulation and recording within the surgical site. Monitoring of the motor system is achieved with motor evoked potentials. These are evoked by transcranial electrical stimulation and recorded from limb muscles and the external anal sphincter. The presence or absence of muscle responses are the parameters monitored. Sensory potentials evoked by tibial or pudendal nerve stimulation and recorded from the dorsal columns via an epidurally inserted electrode and/or from the scalp as cortical responses are used to access the integrity of sensory pathways. Amplitudes and latencies of these responses are then interpreted. The bulbocavernosus reflex, with stimulation of the pudendal nerve and recording of muscle responses in the external anal sphincter, is used for continuous monitoring of the reflex circuitry. Presence or absence of this response is the pertinent parameter that is monitored. Conclusions Intraoperative neurophysiology provides a wide and reliable set of techniques for intraoperative identification of neural structures and continuous monitoring of their functional integrity.


2004 ◽  
Vol 100 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Katsushige Watanabe ◽  
Takashi Watanabe ◽  
Akio Takahashi ◽  
Nobuhito Saito ◽  
Masafumi Hirato ◽  
...  

✓ The feasibility of high-frequency transcranial electrical stimulation (TES) through screw electrodes placed in the skull was investigated for use in intraoperative monitoring of the motor pathways in patients who are in a state of general anesthesia during cerebral and spinal operations. Motor evoked potentials (MEPs) were elicited by TES with a train of five square-wave pulses (duration 400 µsec, intensity ≤ 200 mA, frequency 500 Hz) delivered through metal screw electrodes placed in the outer table of the skull over the primary motor cortex in 42 patients. Myogenic MEPs to anodal stimulation were recorded from the abductor pollicis brevis (APB) and tibialis anterior (TA) muscles. The mean threshold stimulation intensity was 48 ± 17 mA for the APB muscles, and 112 ± 35 mA for the TA muscles. The electrodes were firmly fixed at the site and were not dislodged by surgical manipulation throughout the operation. No adverse reactions attributable to the TES were observed. Passing current through the screw electrodes stimulates the motor cortex more effectively than conventional methods of TES. The method is safe and inexpensive, and it is convenient for intraoperative monitoring of motor pathways.


Sign in / Sign up

Export Citation Format

Share Document