Pre-movement facilitation of motor-evoked potentials in man during transcranial stimulation of the central motor pathways

1988 ◽  
Vol 458 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Paolo M. Rossini ◽  
Flora Zarola ◽  
Erik Stalberg ◽  
Maria Caramia
Neurosurgery ◽  
1984 ◽  
Vol 15 (3) ◽  
pp. 287-302 ◽  
Author(s):  
Walter J. Levy ◽  
Donald H. York ◽  
Michael McCaffrey ◽  
Fred Tanzer

Abstract Electrical monitoring of the motor system offers the potential for the detection of injury, the diagnosis of disease, the evaluation of treatment, and the prediction of recovery from damage. Existing evoked potentials monitor one or another sensory modality, but no generally usable motor monitor exists. We have reported a motor evoked potential using direct stimulation of the spinal cord over the motor tracts in cats and in humans. To achieve a less invasive monitor, we used transcranial stimulation over the motor cortex in the cat, thus stimulating the motor cortex. We report here the initial application of this method to humans. A plate electrode over the motor cortex on the scalp and a second electrode on the palate direct a mild current through the motor cortex which will activate the motor pathways. This signal can be recorded over the spinal cord. It can elicit contralateral peripheral nerve and electromyographic signals in the limbs or movements when the appropriate stimulation parameters are used. In clinical use to date, this has been more reliable than the somatosensory evoked potential in predicting motor function in patients where the two tests differed. It offers a number of possibilities for the development of valuable brain and spinal cord monitoring techinques, but requires further animal studies and clinical experience. Studies to date have not demonstrated adverse effects, but evaluation is continuing.


Neurosurgery ◽  
1984 ◽  
Vol 15 (2) ◽  
pp. 214-227 ◽  
Author(s):  
Walter J. Levy ◽  
Michael McCaffrey ◽  
Donald H. York ◽  
Fred Tanzer

Neurosurgery ◽  
1984 ◽  
Vol 15 (3) ◽  
pp. 287???302 ◽  
Author(s):  
W J Levy ◽  
D H York ◽  
M McCaffrey ◽  
F Tanzer

Neurosurgery ◽  
1984 ◽  
Vol 15 (2) ◽  
pp. 214???27
Author(s):  
W J Levy ◽  
M McCaffrey ◽  
D H York ◽  
F Tanzer

1991 ◽  
Vol 260 (5) ◽  
pp. G720-G723 ◽  
Author(s):  
J. Herdmann ◽  
K. Bielefeldt ◽  
P. Enck

The motor innervation of the pelvic floor plays a major role in defecation disorders such as fecal incontinence. It consists of central motor pathways and peripheral nerve fibers. Transcranial magnetoelectric stimulation of the brain and magnetoelectric stimulation of the lumbosacral motor roots were performed in 10 healthy volunteers. Motor evoked potentials were recorded from the external anal sphincter. This procedure allowed differentiation between a predominantly central and a solely peripheral component of the motor innervation of the external and sphincter. To compare these recordings with well-established data, motor evoked potentials were also recorded from the anterior tibial muscle. The central motor conduction time was 20.9 +/- 2.4 ms to the external anal sphincter and 14.8 +/- 2.3 ms to the anterior tibial muscles. Central motor conduction velocities were 40.7 +/- 5.2 and 55.5 +/- 7.6 m/s, respectively. This showed that conduction in the central fibers to the external anal sphincter was significantly slower than in those to the anterior tibial muscle. We conclude 1) that magnetoelectric stimulation allows differentiation between central and peripheral portions of the motor innervation of the pelvic floor, and 2) that central motor pathways innervating the pelvic floor differ significantly in their physiological properties from those innervating limb muscles.


2004 ◽  
Vol 100 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Katsushige Watanabe ◽  
Takashi Watanabe ◽  
Akio Takahashi ◽  
Nobuhito Saito ◽  
Masafumi Hirato ◽  
...  

✓ The feasibility of high-frequency transcranial electrical stimulation (TES) through screw electrodes placed in the skull was investigated for use in intraoperative monitoring of the motor pathways in patients who are in a state of general anesthesia during cerebral and spinal operations. Motor evoked potentials (MEPs) were elicited by TES with a train of five square-wave pulses (duration 400 µsec, intensity ≤ 200 mA, frequency 500 Hz) delivered through metal screw electrodes placed in the outer table of the skull over the primary motor cortex in 42 patients. Myogenic MEPs to anodal stimulation were recorded from the abductor pollicis brevis (APB) and tibialis anterior (TA) muscles. The mean threshold stimulation intensity was 48 ± 17 mA for the APB muscles, and 112 ± 35 mA for the TA muscles. The electrodes were firmly fixed at the site and were not dislodged by surgical manipulation throughout the operation. No adverse reactions attributable to the TES were observed. Passing current through the screw electrodes stimulates the motor cortex more effectively than conventional methods of TES. The method is safe and inexpensive, and it is convenient for intraoperative monitoring of motor pathways.


Sign in / Sign up

Export Citation Format

Share Document