Gastric mucosal repair and release of HCO3- after damage by 2 M NaCl in cat: role of systemic acid base status

1994 ◽  
Vol 267 (4) ◽  
pp. G536-G545 ◽  
Author(s):  
K. Guttu ◽  
K. Grong ◽  
K. Svanes ◽  
J. E. Gronbech

To study the influence of acid base balance on gastric mucosal repair, NH4Cl or NaHCO3 was given intravenously to anesthetized cats after mucosal damage induced by intraluminal 2 M NaCl. Saline at pH 5 or 1 was perfused via an oral tube through the stomach lumen and evacuated via a pyloric tube to a chamber with pH and PCO2 electrodes. Luminal bicarbonate (HCO3-) was markedly increased early after damage in both acidotic and alkalotic animals. In alkalotic animals mucosal blood flow increased about twofold in response to mucosal damage, whereas the early hyperemic response was either completely attenuated or blunted in acidotic animals. HCO3- release was correlated to availability of HCO3- by blood in alkalotic animals with luminal pH 5. Alkalotic animals showed improved repair compared with acidotic animals, and mucosal restitution was correlated to availability of HCO3- by blood. We conclude that luminal leakage of HCO3- or plasma after mucosal damage depends on availability by blood and consumption of HCO3- within the mucosa and that blood borne HCO3- has a major influence on gastric mucosal repair.

1989 ◽  
Vol 257 (2) ◽  
pp. F170-F176 ◽  
Author(s):  
J. C. Brown ◽  
R. K. Packer ◽  
M. A. Knepper

Bicarbonate is formed when organic anions are oxidized systemically. Therefore, changes in organic anion excretion can affect systemic acid-base balance. To assess the role of organic anions in urinary acid-base excretion, we measured urinary excretion in control rats, NaHCO3-loaded rats, and NH4Cl-loaded rats. Total organic anions were measured by the titration method of Van Slyke. As expected, NaHCO3 loading increased urine pH and decreased net acid excretion (NH4+ + titratable acid - HCO3-), whereas NH4Cl loading had the opposite effect. Organic anion excretion was increased in response to NaHCO3 loading and decreased in response to NH4Cl loading. We quantified the overall effect of organic ion plus inorganic buffer ion excretion on acid-base balance. The amounts of organic anions excreted by all animals in this study were greater than the amounts of NH4+, HCO3-, or titratable acidity excreted. In addition, in response to acid and alkali loading, changes in urinary organic anion excretion were 40-50% as large as changes in net acid excretion. We conclude that, in rats, regulation of organic anion excretion can contribute importantly to the overall renal response to acid-base disturbances.


1989 ◽  
Vol 257 (4) ◽  
pp. F696-F699
Author(s):  
T. Almdal ◽  
H. Vilstrup ◽  
K. Bjerrum ◽  
L. O. Kristensen

It has been suggested that urea synthesis participates directly in body pH homeostasis by removal of bicarbonate. To elucidate this hypothesis sodium bicarbonate or sodium chloride was infused (11.5 mumol/min) for 90 min into control rats and into rats that had undergone an 85% hepatectomy immediately before starting the infusion. Urea synthesis rate was 2.6 +/- 0.3 mumol/min (mean +/- SE) in controls, and was significantly (P less than 0.01) reduced to 1.0 +/- 0.2 mumol/min in partially hepatectomized rats. At the start of bicarbonate infusion, pH was 7.38 and 7.34 in control and partially hepatectomized rats, respectively, and at the end of infusion, pH was 7.56 and 7.51. Standard bicarbonate at start of bicarbonate infusion was 21.9 and 21.3 mM in controls and partially hepatectomized, respectively, and it increased to 32.7 and 29.9 mM at end of infusion. In saline-infused rats a slight decrease of approximately 0.05 pH units was observed during the experiment, but again no difference emerged between control and partially hepatectomized rats. It is concluded that a major role of the liver in the regulation of acid-base balance is unlikely.


Sign in / Sign up

Export Citation Format

Share Document