scholarly journals HCl-activated neural and epithelial vanilloid receptors (TRPV1) in cat esophageal mucosa

2009 ◽  
Vol 297 (1) ◽  
pp. G135-G143 ◽  
Author(s):  
Ling Cheng ◽  
Suzanne de la Monte ◽  
Jie Ma ◽  
Jie Hong ◽  
Ming Tong ◽  
...  

To test whether transient receptor potential channel vanilloid subfamily member-1 (TRPV1) mediates acid-induced inflammation in the esophagus, a tubular segment of esophageal mucosa was tied at both ends, forming a sac. The sac was filled with 0.01 N HCl (or Krebs buffer for control) and kept in oxygenated Krebs buffer at 37°C. The medium around the sac (supernatant) was collected after 3 h. Supernatant of the HCl-filled sac abolished contraction of esophageal circular muscle strips in response to electric field stimulation. Contraction was similarly abolished by supernatant of mucosal sac filled with the TRPV1 agonist capsaicin (10−6 M). These effects were reversed by the selective TRPV1 antagonist 5′-iodoresiniferatoxin (IRTX) and by the platelet-activating factor (PAF) receptor antagonist CV9388. Substance P and CGRP levels in mucosa and in supernatant increased in response to HCl, and these increases were abolished by IRTX and by tetrodotoxin (TTX) but not affected by CV9388, indicating that substance P and CGRP are neurally released and PAF independent. In contrast, the increase in PAF was blocked by IRTX but not by TTX. Presence of TRPV1 receptor was confirmed by RT-PCR and by Western blot analysis in whole mucosa and in esophageal epithelial cells enzymatically isolated and sorted by flow cytometry or immunoprecipitated with cytokeratin antibodies. In epithelial cells PAF increased in response to HCl, and the increase was abolished by IRTX. We conclude that HCl-induced activation of TRPV1 receptors in esophageal mucosa causes release of substance P and CGRP from neurons and release of PAF from epithelial cells.

Author(s):  
Ahsen Ustaoglu ◽  
Akinari Sawada ◽  
Chung Lee ◽  
Wei-Yi Lei ◽  
Chien-Lin Chen ◽  
...  

The underlying causes of heartburn, characteristic symptom of gastro-esophageal reflux disease(GERD), remain incompletely understood. Superficial afferent innervation of the esophageal mucosa in nonerosive reflux disease(NERD) may drive nociceptive reflux perception, but its acid-sensing role has not yet been established. Transient receptor potential vanilloid subfamily member-1(TRPV1), transient receptor potential Melastatin 8(TRPM8), and acid sensing ion channel 3(ASIC3) are regulators of sensory nerve activity and could be important reflux-sensing receptors within the esophageal mucosa. We characterised TRPV1, TRPM8, and ASIC3 expression in esophageal mucosa of GERD patients. We studied 10 NERD, 10 erosive reflux disease(ERD), 7 functional heartburn(FH), and 8 Barrett's esophagus(BE) patients. Biopsies obtained from the distal esophageal mucosa were co-stained with TRPV1, TRPM8, or ASIC3, and CGRP, CD45, or E-cadherin. RNA expression of TRPV1, TRPM8, and ASIC3 was assessed using qPCR. NERD patients had significantly increased expression of TRPV1 on superficial sensory nerves compared to ERD (p=0.028) or BE (p=0.017). Deep intrapapillary nerve endings did not express TRPV1 in all phenotypes studied. ASIC3 was exclusively expressed on epithelial cells most significantly in NERD and ERD patients (p=<0.0001). TRPM8 was expressed on submucosal CD45+ leukocytes. Superficial localisation of TRPV1-immunoreactive nerves in NERD, and increased ASIC3 co-expression on epithelial cells in NERD and ERD suggests a mechanism for heartburn sensation. Esophageal epithelial cells may play a sensory role in acid reflux perception and act interdependently with TRPV1-expressing mucosal nerves to augment hypersensitivity in NERD patients, raising the enticing possibility of topical antagonists for these ion channels as a therapeutic option.


2013 ◽  
Vol 206 (3) ◽  
pp. 462-471 ◽  
Author(s):  
Thomas Robert Heinrich Büch ◽  
Eva Anna Maria Schäfer ◽  
Maria-Theresia Demmel ◽  
Ingrid Boekhoff ◽  
Horst Thiermann ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 147
Author(s):  
Yu Fu ◽  
Peng Shang ◽  
Bo Zhang ◽  
Xiaolong Tian ◽  
Ruixue Nie ◽  
...  

In animals, muscle growth is a quantitative trait controlled by multiple genes. Previously, we showed that the transient receptor potential channel 1 (TRPC1) gene was differentially expressed in muscle tissues between pig breeds with divergent growth traits base on RNA-seq. Here, we characterized TRPC1 expression profiles in different tissues and pig breeds and showed that TRPC1 was highly expressed in the muscle. We found two single nucleotide polymorphisms (SNPs) (C-1763T and C-1604T) in TRPC1 that could affect the promoter region activity and regulate pig growth rate. Functionally, we used RNAi and overexpression to illustrate that TRPC1 promotes myoblast proliferation, migration, differentiation, fusion, and muscle hypertrophy while inhibiting muscle degradation. These processes may be mediated by the activation of Wnt signaling pathways. Altogether, our results revealed that TRPC1 might promote muscle growth and development and plays a key role in Wnt-mediated myogenesis.


Sign in / Sign up

Export Citation Format

Share Document