scholarly journals Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor

2015 ◽  
Vol 309 (1) ◽  
pp. H127-H136 ◽  
Author(s):  
Paulo W. Pires ◽  
William F. Jackson ◽  
Anne M. Dorrance

Proper perfusion is vital for maintenance of neuronal homeostasis and brain function. Changes in the function and structure of cerebral parenchymal arterioles (PAs) could impair blood flow regulation and increase the risk of cerebrovascular diseases, including dementia and stroke. Hypertension alters the structure and function of large cerebral arteries, but its effects on PAs remain unknown. We hypothesized that hypertension increases myogenic tone and induces inward remodeling in PAs; we further proposed that antihypertensive therapy or mineralocorticoid receptor (MR) blockade would reverse the effects of hypertension. PAs from 18-wk-old stroke-prone spontaneously hypertensive rats (SHRSP) were isolated and cannulated in a pressure myograph. At 50-mmHg intraluminal pressure, PAs from SHRSP showed higher myogenic tone (%tone: 39.1 ± 1.9 vs. 28.7 ± 2.5%, P < 0.01) and smaller resting luminal diameter (34.7 ± 1.9 vs. 46.2 ± 2.4 μm, P < 0.01) than those from normotensive Wistar-Kyoto rats, through a mechanism that seems to require Ca2+ influx through L-type voltage-gated Ca2+ channels. PAs from SHRSP showed inward remodeling (luminal diameter at 60 mmHg: 55.2 ± 1.4 vs. 75.7 ± 5.1 μm, P < 0.01) and a paradoxical increase in distensibility and compliance. Treatment of SHRSP for 6 wk with antihypertensive therapy reduced PAs' myogenic tone, increased their resting luminal diameter, and prevented inward remodeling. In contrast, treatment of SHRSP for 6 wk with an MR antagonist did not reduce blood pressure or myogenic tone, but prevented inward remodeling. Thus, while hypertensive remodeling of PAs may involve the MR, myogenic tone seems to be independent of MR activity.

2006 ◽  
Vol 290 (3) ◽  
pp. H1081-H1089 ◽  
Author(s):  
Jamila Ibrahim ◽  
Ann McGee ◽  
Delyth Graham ◽  
John C. McGrath ◽  
Anna F. Dominiczak

Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20–200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY ( P < 0.05) and SHRSP ( P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity ( P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120–140 vs. 140–180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.


2010 ◽  
Vol 298 (6) ◽  
pp. H1769-H1775 ◽  
Author(s):  
YiLin Ren ◽  
Martin A. D'Ambrosio ◽  
Ruisheng Liu ◽  
Patrick J. Pagano ◽  
Jeffrey L. Garvin ◽  
...  

Spontaneously hypertensive rats (SHRs) have normal glomerular capillary pressure even though renal perfusion pressure is higher, suggesting that preglomerular vessels exhibit abnormally high resistance. This may be due to increased superoxide (O2−) production, which contributes to the vasoconstriction in hypertension. We tested the hypothesis that the myogenic response of the afferent arteriole (Af-Art) is exaggerated in SHRs because of increased levels of reactive oxygen species (ROS). Single Af-Arts were microdissected from kidneys of SHRs and Wistar-Kyoto (WKY) rats and microperfused in vitro. When perfusion pressure in the Af-Art was increased stepwise from 60 to 140 mmHg, the luminal diameter decreased by 8.4 ± 2.9% in WKY Af-Arts but fell by 29.3 ± 5.6% in SHR Af-Arts. To test whether ROS production is enhanced during myogenic response in SHRs, we measured chloromethyl-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA) florescence before and after increasing intraluminal pressure from 60 to 140 mmHg. Pressure-induced increases in ROS were fourfold greater in SHR Af-Arts compared with WKY Af-Arts (SHR, 48.0 ± 2.2%; and WKY, 12.2 ± 0.3%). To test whether O2− contributes to the myogenic response in SHRs, either the membrane-permeant O2− scavenger Tempol or the nox2-based NADPH oxidase (NOX2) inhibitor gp91 ds-tat were added to the Af-Art lumen and bath and the myogenic response was tested before and after treatment. Both Tempol (10−4 M) and gp91 ds-tat (10−5 M) significantly attenuated the pressure-induced constriction in SHR Af-Arts but not in WKY Af-Arts. We conclude that 1) pressure-induced constriction is exaggerated in SHR Af-Arts, 2) NOX2-derived O2− may contribute to the enhanced myogenic response, and 3) O2− exerts little influence on the myogenic response under normotensive conditions.


2000 ◽  
Vol 279 (2) ◽  
pp. H610-H618 ◽  
Author(s):  
Greg G. Geary ◽  
Diana N. Krause ◽  
Sue P. Duckles

Gender is known to influence the incidence and severity of cerebrovascular disease. In the present study, luminal diameter was measured in vitro in pressurized middle cerebral artery segments from male rats that were either untreated, orchiectomized (ORX), ORX with testosterone treatment (ORX+TEST), or ORX with estrogen treatment (ORX+EST). The maximal passive diameters (0 Ca2+ + 3 mM EDTA) of arteries from all four groups were similar. In endothelium-intact arteries, myogenic tone was significantly greater in arteries from untreated and ORX+TEST compared with arteries from either ORX or ORX+EST. During exposure to N G-nitro-l-arginine-methyl ester (l-NAME), an NO synthase (NOS) inhibitor, myogenic tone significantly increased in all groups. The effect of l-NAME was significantly greater in arteries from untreated and ORX+EST compared with arteries from ORX and ORX+TEST rats. Differences in myogenic tone between ORX and ORX+TEST persisted after inhibition of NOS. After endothelium removal or inhibition of the cyclooxygenase pathway combined with K+ channel blockers, myogenic tone differences between ORX and ORX+TEST were abolished. Wall thickness and forced dilation were not significantly different between arteries from ORX and ORX+TEST. Our data show that gonadal hormones affect myogenic tone in male rat cerebral arteries through NOS- and/or endothelium-dependent mechanisms.


1996 ◽  
Vol 270 (1) ◽  
pp. H1-H6 ◽  
Author(s):  
A. S. Izzard ◽  
S. J. Bund ◽  
A. M. Heagerty

To investigate myogenic tone during the developmental and established phases of hypertension, segments of distal (6th order) mesenteric arteries from spontaneously hypertensive rats (SHR) at 5 and 20 wk were isolated and pressurized in vitro and compared with vessels from age-matched Wistar-Kyoto (WKY) control animals. At 5 wk, tone was significantly enhanced in the SHR. At 20 wk tone was no longer significantly increased over a wide pressure range, although arteries from the SHR were able to maintain diameter at all pressures studied, whereas vessels from the WKY exhibited forced distension at 180 and 200 mmHg. From the relative slope of the pressure-diameter relationship (myogenic index), no increase in peak myogenic responsiveness was observed in arteries from the SHR at either time point. Passive lumen diameters were significantly decreased in arteries from SHR at both time points. From the total and passive midwall circumference-tension relationships, total tension was observed at a reduced midwall circumference in the SHR, but increased absolute levels of total tension were not observed. The normalized midwall circumference-tension relationships in the two strains revealed increased total tension due to active tension development at a reduced normalized circumference at 5 wk in the SHR. At 20 wk the normalized midwall circumference-tension relationships in the two strains were identical. These results demonstrate that myogenic tone in mesenteric arteries is enhanced during the development of hypertension but not when it is established, except at high intraluminal pressures.


2014 ◽  
Vol 117 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Marilyn J. Cipolla ◽  
Julie Sweet ◽  
Siu-Lung Chan ◽  
Matthew J. Tavares ◽  
Natalia Gokina ◽  
...  

Brain parenchymal arterioles (PAs) are high-resistance vessels that branch off pial arteries and perfuse the brain parenchyma. PAs are the target of cerebral small vessel disease and have been shown to have greater pressure-induced tone at lower pressures than pial arteries. We investigated mechanisms by which brain PAs have increased myogenic tone compared with middle cerebral arteries (MCAs), focusing on differences in vascular smooth muscle (VSM) calcium and ion channel function. The amount of myogenic tone and VSM calcium was measured using Fura 2 in isolated and pressurized PAs and MCAs. Increases in intraluminal pressure caused larger increases in tone and cytosolic calcium in PAs compared with MCAs. At 50 mmHg, myogenic tone was 37 ± 5% for PAs vs. 6.5 ± 4% for MCAs ( P < 0.01), and VSM calcium was 200 ± 20 nmol/l in PAs vs. 104 ± 15 nmol/l in MCAs ( P < 0.01). In vessels permeabilized with Staphylococcus aureus α-toxin, PAs were not more sensitive to calcium, suggesting calcium sensitization was not at the level of the contractile apparatus. PAs were 30-fold more sensitive to the voltage-dependent calcium channel (VDCC) inhibitor nifedipine than MCAs (EC50 for PAs was 3.5 ± 0.4 vs. 82.1 ± 2.1 nmol/l for MCAs; P < 0.01); however, electrophysiological properties of the VDCC were not different in VSM. PAs had little to no response to the calcium-activated potassium channel inhibitor iberiotoxin, whereas MCAs constricted ∼15%. Thus increased myogenic tone in PAs appears related to differences in ion channel activity that promotes VSM membrane depolarization but not to a direct sensitization of the contractile apparatus to calcium.


1994 ◽  
Vol 266 (3) ◽  
pp. H1027-H1033 ◽  
Author(s):  
M. A. Hajdu ◽  
G. L. Baumbach

The goal of this study was to investigate factors that contribute to reductions in internal diameter of large and small cerebral arteries during chronic hypertension. We measured diameter of second- and third-order branches of the posterior cerebral artery in vitro during maximal dilation with EDTA in 6-mo-old stroke-prone spontaneously hypertensive rats (SHRSP, n = 7) and Wistar-Kyoto rats (WKY, n = 7). Cross-sectional area of the vessel wall, measured histologically, was not significantly different at 70 mmHg in SHRSP and WKY in large or small branches of posterior cerebral artery. In large branches of posterior cerebral artery, external and internal diameters were significantly less at 70 mmHg in SHRSP than in WKY, whereas external and internal diameters converged at 0 mmHg in the two groups of rats. In small branches, on the other hand, external and internal diameters were significantly less at all levels of intravascular pressure in SHRSP than in WKY. The stress-strain relation in posterior cerebral artery of SHRSP was shifted to the left in large branches and to the right in small branches, which indicates that distensibility was reduced in large cerebral arteries of SHRSP and increased in small cerebral arteries. These findings suggest that different mechanisms are responsible for impairment of maximal dilator capacity in large and small cerebral arteries of SHRSP: reduced distensibility in large arteries and remodeling with reduced external diameter in small arteries. Furthermore the findings provide additional support for the concept that hypertrophy may not be a primary factor in impaired maximal dilation.


2008 ◽  
Vol 294 (4) ◽  
pp. H1793-H1803 ◽  
Author(s):  
Kimberly P. Gannon ◽  
Lauren G. VanLandingham ◽  
Nikki L. Jernigan ◽  
Samira C. Grifoni ◽  
Gina Hamilton ◽  
...  

Recent studies from our laboratory demonstrated the importance of mechanosensitive epithelial Na+ channel (ENaC) proteins in pressure-induced constriction in renal and cerebral arteries. ENaC proteins are closely related to acid-sensing ion channel 2 (ASIC2), a protein known to be required for normal mechanotransduction in certain sensory neurons. However, the role of the ASIC2 protein in pressure-induced constriction has never been addressed. The goal of the current study was to investigate the role of ASIC2 proteins in pressure-induced, or myogenic, constriction in the mouse middle cerebral arteries (MCAs) from ASIC2 wild-type (+/+), heterozygous (+/−), and null (−/−) mice. Constrictor responses to KCl (20–80 mM) and phenylephrine (10−7–10−4 M) were not different among groups. However, vasoconstrictor responses to increases in intraluminal pressure (15–90 mmHg) were impaired in MCAs from ASIC2−/− and +/− mice. At 60 and 90 mmHg, MCAs from ASIC2+/+ mice generated 13.7 ± 2.1% and 15.8 ± 2.0% tone and ASIC2−/− mice generated 7.4 ± 2.8% and 12.5 ± 2.4% tone, respectively. Surprisingly, MCAs from ASIC2+/− mice generated 1.2 ± 2.2% and 3.9 ± 1.8% tone at 60 and 90 mmHg. The reason underlying the total loss of myogenic tone in the ASIC2+/− is not clear, although the loss of mechanosensitive β- and γ-ENaC proteins may be a contributing factor. These results demonstrate that normal ASIC2 expression is required for normal pressure-induced constriction in the MCA. Furthermore, ASIC2 may be involved in establishing the basal level of myogenic tone.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Toshihide Kashihara ◽  
Koichi Nakayama ◽  
Tomohisa Ishikawa

Background Cerebral arteries respond to an increase in intraluminal pressure with vasoconstriction, being referred to as myogenic tone. A number of studies have postulated the mechanisms involved in the development of myogenic tone; however, less information is available about how myogenic tone is maintained. The present study thus investigated the mechanisms underlying sustained myogenic constriction in isolated rat posterior cerebral arteries. Methods and Results Long-term elevation of intraluminal pressure from 5 to 60 mmHg for 1 hr caused sustained constriction and [Ca 2+ ] i elevation. In the presence of rottlerin, a PKCδ inhibitor, the pressure-induced constriction and [Ca 2+ ] i elevation were gradually declined, and nearly abolished at the end of the 1-hr stimulation (sustained phase). In contrast, Gö 6976, a cPKC inhibitor, significantly inhibited the constriction for up to 5 min after the start of stimulation (initial phase), but had no effects on the [Ca 2+ ] i elevation. The pressure stimulation induced small [Ca 2+ ] i elevation even in the presence of nicaripine. Ruthenium red (RuR), a TRPV inhibitor, significantly inhibited the nicardipine-resistant [Ca 2+ ] i elevation in the initial phase. However, slowly developing [Ca 2+ ] i elevation was still observed in the sustained phase. In contrast, rottlerin had little effect on the initial phase, but significantly inhibited the sustained one. Moreover, the combination of RuR and rottlerin nearly abolished the nicardipine-resistant [Ca 2+ ] i elevation. PKCα, γ, δ, and ε, but not PKCβ, were detected by immunohistochemisty in smooth muscle cells of rat posterior cerebral arteries. Conclusions PKC isoforms have different roles in the development and maintain of the myogenic constriction in rat posterior cerebral arteries: cPKC (α and/or γ) mediates Ca 2+ sensitization in the initial phase, whereas PKCδ mediates [Ca 2+ ] i elevation via the activation of RuR-resistant cation channels in the sustained phase. Table. Effects of PKC inhibitors on pressure-induced constriction and [Ca 2+ ] i elevation


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Rafael M Jeuken ◽  
Luciana V Rossoni

Structural, mechanical and functional adjustments occur in small mesenteric arteries (SMA) of hypertensive models. However, the role of these properties to trigger hypertension is unknown. As expected, the systolic blood pressure was higher in adult (A, 6-month old) male SHR as compared to Wistar-Kyoto rats (WKY) (WKYA: 125±1.1 vs SHRA: 187±3.3 mmHg*); however, it was similar in young (Y, 6-week old) SHR as compared to age-matched WKY (WKYY: 117±1.8 vs SHRY: 120±2.1 mmHg). The 3rd order mesenteric arteries were mounted in a pressure myograph to analyze the structural [lumen diameter (L), cross sectional area (CSA), wall/lumen ratio (W/L)] and mechanical properties [β, representing wall stiffness]. Endothelium-dependent relaxation to acetylcholine (ACh, 10-10-10-5 M) or -independent relaxation to sodium nitroprusside (SNP, 10-9-10-4 M) were evaluated in SMA using wire myography. At the passive condition (Ca2+-free solution) and intraluminal pressure of 160 mmHg, the L was lower in SMA of both SHR (WKYY: 294±12.0 vs SHRY: 241±4.3*; WKYA: 353±4.7 vs SHRA: 283±6.2 μm*); while the W/L ratio was higher in SHR as compared to age-matched WKY. CSA was similar between age-matched groups. β value was higher in SHR independently of age (WKYY: 5.8±0.4 vs. SHRY: 7.8±0.4*; WKYA: 4.7±0.1 vs SHRA: 6.7±0.4*). The collagen area evaluated by picrosirius red staining was higher in SMA of SHRA as compared to WKYA (WKYA: 15±2.4 vs SHRA: 26±1.8%*), but it did not change in young rats. ACh-induced maximal relaxation was similar in SMA from young groups (WKYY: 93±3.8 vs SHRY: 92±3.1%); however, in SHRA ACh elicited a biphasic curve inducing contraction at concentrations higher than 10-7M, which was not observed in WKYA. Relaxation to SNP did not change among groups. Reactive oxygen species analyzed by dihydroethidium was higher in SMA of SHRA as compared to WKYA (WKYA: 100±3.7 vs SHRA: 126±10.3% of integrated density*), but did not change in young SMA. Although SMA of SHRY present eutrophic inward remodeling and wall stiffening, it does not present collagen deposition, oxidative stress or endothelial dysfunction as observed in SHRA; suggesting that vascular remodeling and wall stiffness of SMA are not sufficient to trigger hypertension, at least when endothelial function is preserved.


2015 ◽  
Vol 119 (7) ◽  
pp. 817-823 ◽  
Author(s):  
Julie G. Sweet ◽  
Siu-Lung Chan ◽  
Marilyn J. Cipolla

We studied the effect of hypertension and chronic hypoperfusion on brain parenchymal arteriole (PA) structure and function. PAs were studied isolated and pressurized from 18-wk-old Wistar-Kyoto (WKY18; n = 8) and spontaneously hypertensive stroke prone (SHRSP18; n = 8) and 5-wk-old prehypertensive (SHRSP5; n = 8) rats. In separate groups, unilateral common carotid artery occlusion (UCCAo) was performed for 4 wk to cause chronic hypoperfusion in 18-wk-old WKY (WKY18-CH; n = 8) and SHRSP (SHRSP18-CH; n = 8). UCCAo caused PAs to have significantly diminished myogenic tone (31 ± 3 vs. 14 ± 6% at 60 mmHg; P < 0.05) and reactivity to pressure from WKY18-CH vs. WKY18 animals. The effect of UCCAo was limited to normotensive animals, as there was little effect of chronic hypoperfusion on vascular reactivity or percent tone in PAs from SHRSP18 vs. SHRSP18-CH animals (53 ± 4 vs. 41 ± 3%; P > 0.05). However, PAs from SHRSP18 and SHRSP5 animals had significantly greater tone compared with WKY18, suggesting an effect of strain and not hypertension per se on PA vasoconstriction. Structurally, PAs from SHRSP18 and SHRSP5 animals had similar sized lumen diameters, but increased wall thickness and distensibility compared with WKY18. Interestingly, chronic hypoperfusion did not affect the structure of PAs from either WKY18-CH or SHRSP18-CH animals. Thus PAs responded to UCCAo with active vasodilation, but not structural remodeling, an effect that was absent in SHRSP. The increased tone of PAs from SHRSP animals, combined with lack of response to chronic hypoperfusion, may contribute to the propensity for ischemic lesions and increased perfusion deficit during hypertension.


Sign in / Sign up

Export Citation Format

Share Document