Sex-specific differences in cerebral arterial myogenic tone in hypertensive and normotensive rats

2006 ◽  
Vol 290 (3) ◽  
pp. H1081-H1089 ◽  
Author(s):  
Jamila Ibrahim ◽  
Ann McGee ◽  
Delyth Graham ◽  
John C. McGrath ◽  
Anna F. Dominiczak

Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20–200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY ( P < 0.05) and SHRSP ( P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity ( P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120–140 vs. 140–180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.

1992 ◽  
Vol 70 (4) ◽  
pp. 552-564 ◽  
Author(s):  
John S. Smeda

There are a number of alterations that protect the cerebrovasculature from hemorrhagic stroke development during hypertension. The upper limit of cerebral blood flow autoregulation is shifted to higher blood pressure levels; this allows a constant blood flow to be maintained during hypertension. Studies we have performed have indicated that the middle cerebral arteries (MCA) of Wistar–Kyoto stroke-prone spontaneously hypertensive rats (spSHR) lose their ability to constrict in response to elevations in transmural pressure. The decline in such function precedes stroke development and totally disappears at an age where there is a 100% mortality from stroke. Prior to stroke development, spSHR also develop uremic conditions and signs of renal failure. The induction of uremia in stroke-resistant SHR (srSHR) via nephrectomy induces these animals to develop stroke. Like prestroke spSHR, prestroke uremic srSHR also have MCA with attenuated pressure-dependent myogenic function. It is hypothesized that the inability to increase vascular resistance in response to elevations in pressure might promote overperfusion of the more distal vasculature leading to cerebral hemorrhage formation. Since uremia promotes bleeding tendencies, such alterations along with the loss of cerebrovascular myogenic function could initiate or aggrevate hemorrhage formation.Key words: stroke-prone SHR, stroke, cerebral vasculature, myogenic response, autoregulation.


2009 ◽  
Vol 297 (1) ◽  
pp. H293-H303 ◽  
Author(s):  
Ann A. Tobin ◽  
Biny K. Joseph ◽  
Hamood N. Al-Kindi ◽  
Sulayma Albarwani ◽  
Jane A. Madden ◽  
...  

The cerebral arteries of hypertensive rats are depolarized and highly myogenic, suggesting a loss of K+ channels in the vascular smooth muscle cells (VSMCs). The present study evaluated whether the dilator function of the prominent Shaker-type voltage-gated K+ (KV1) channels is attenuated in middle cerebral arteries from two rat models of hypertension. Block of KV1 channels by correolide (1 μmol/l) or psora-4 (100 nmol/l) reduced the resting diameter of pressurized (80 mmHg) cerebral arteries from normotensive rats by an average of 28 ± 3% or 26 ± 3%, respectively. In contrast, arteries from spontaneously hypertensive rats (SHR) and aortic-banded (Ao-B) rats with chronic hypertension showed enhanced Ca2+-dependent tone and failed to significantly constrict to correolide or psora-4, implying a loss of KV1 channel-mediated vasodilation. Patch-clamp studies in the VSMCs of SHR confirmed that the peak K+ current density attributed to KV1 channels averaged only 5.47 ± 1.03 pA/pF, compared with 9.58 ± 0.82 pA/pF in VSMCs of control Wistar-Kyoto rats. Subsequently, Western blots revealed a 49 ± 7% to 66 ± 7% loss of the pore-forming α1.2- and α1.5-subunits that compose KV1 channels in cerebral arteries of SHR and Ao-B rats compared with control animals. In each case, the deficiency of KV1 channels was associated with reduced mRNA levels encoding either or both α-subunits. Collectively, these findings demonstrate that a deficit of α1.2- and α1.5-subunits results in a reduced contribution of KV1 channels to the resting diameters of cerebral arteries from two rat models of hypertension that originate from different etiologies.


2015 ◽  
Vol 309 (1) ◽  
pp. H127-H136 ◽  
Author(s):  
Paulo W. Pires ◽  
William F. Jackson ◽  
Anne M. Dorrance

Proper perfusion is vital for maintenance of neuronal homeostasis and brain function. Changes in the function and structure of cerebral parenchymal arterioles (PAs) could impair blood flow regulation and increase the risk of cerebrovascular diseases, including dementia and stroke. Hypertension alters the structure and function of large cerebral arteries, but its effects on PAs remain unknown. We hypothesized that hypertension increases myogenic tone and induces inward remodeling in PAs; we further proposed that antihypertensive therapy or mineralocorticoid receptor (MR) blockade would reverse the effects of hypertension. PAs from 18-wk-old stroke-prone spontaneously hypertensive rats (SHRSP) were isolated and cannulated in a pressure myograph. At 50-mmHg intraluminal pressure, PAs from SHRSP showed higher myogenic tone (%tone: 39.1 ± 1.9 vs. 28.7 ± 2.5%, P < 0.01) and smaller resting luminal diameter (34.7 ± 1.9 vs. 46.2 ± 2.4 μm, P < 0.01) than those from normotensive Wistar-Kyoto rats, through a mechanism that seems to require Ca2+ influx through L-type voltage-gated Ca2+ channels. PAs from SHRSP showed inward remodeling (luminal diameter at 60 mmHg: 55.2 ± 1.4 vs. 75.7 ± 5.1 μm, P < 0.01) and a paradoxical increase in distensibility and compliance. Treatment of SHRSP for 6 wk with antihypertensive therapy reduced PAs' myogenic tone, increased their resting luminal diameter, and prevented inward remodeling. In contrast, treatment of SHRSP for 6 wk with an MR antagonist did not reduce blood pressure or myogenic tone, but prevented inward remodeling. Thus, while hypertensive remodeling of PAs may involve the MR, myogenic tone seems to be independent of MR activity.


1995 ◽  
Vol 78 (1) ◽  
pp. 101-111 ◽  
Author(s):  
J. M. Lash ◽  
H. G. Bohlen

These experiments determined whether a deficit in oxygen supply relative to demand could account for the sustained decrease in tissue PO2 observed during contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR). Relative changes in blood flow were determined from measurements of vessel diameter and red blood cell velocity. Venular hemoglobin oxygen saturation measurements were performed by using in vivo spectrophotometric techniques. The relative dilation [times control (xCT)] of arteriolar vessels during contractions was as large or greater in SHR than in normotensive rats (Wistar-Kyoto), as were the increases in blood flow (2 Hz, 3.50 +/- 0.69 vs. 3.00 +/- 1.05 xCT; 4 Hz, 10.20 +/- 3.06 vs. 9.00 +/- 1.48 xCT; 8 Hz, 16.40 +/- 3.95 vs. 10.70 +/- 2.48 xCT). Venular hemoglobin oxygen saturation was lower in the resting muscle of SHR than of Wistar-Kyoto rats (31.0 +/= 3.0 vs. 43.0 +/- 1.9%) but was higher in SHR after 4- and 8-Hz contractions (4 Hz, 52.0 +/- 4.8 vs. 43.0 +/- 3.6%; 8 Hz, 51.0 +/- 4.6 vs. 41.0 +/- 3.6%). Therefore, an excess in oxygen delivery occurs relative to oxygen use during muscle contractions in SHR. The previous and current results can be reconciled by considering the possibility that oxygen exchange is limited in SHR by a decrease in anatomic or perfused capillary density, arteriovenular shunting of blood, or decreased transit time of red blood cells through exchange vessels.


2000 ◽  
Vol 39 (12) ◽  
pp. 2464-2477 ◽  
Author(s):  
Marlène Durand ◽  
Sylvie Aguerre ◽  
Francesca Fernandez ◽  
Leila Edno ◽  
Isabelle Combourieu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hyun Ku Lee ◽  
Sang-Kwan Moon ◽  
Chul Jin ◽  
Seung-Yeon Cho ◽  
Seong-Uk Park ◽  
...  

The Governing Vessel 14 (GV14) (Dazhui) is one of the acupuncture points referred to as “seven acupoints for stroke.” Nevertheless, there is a scarcity of research on the effects of acupuncture treatment at GV14. This study investigated the effects of acupuncture at GV14 on cerebral blood flow (CBF), especially that in the basilar artery (BA) and the middle cerebral arteries (MCA). Sixteen healthy men aged 20 to 29 years were enrolled in this study. CBF velocity and cerebrovascular reactivity (CVR) were measured using transcranial Doppler sonography (TCD). The following were assessed: closed circuit rebreathing- (CCR-) induced carbon dioxide (CO2) reactivity, modified blood flow velocity at 40 mmHg (CV40) on BA and MCAs, blood pressure (BP), and heart rate (HR). Observed results were obtained after comparison with the baseline evaluation. Statistically significant elevations in CO2 reactivity were recorded in the BA (3.28 to 4.70, p < 0.001 ) and MCAs (right: 3.81 to 5.25, p = 0.001 ; left: 3.84 to 5.12, p = 0.005 ) after acupuncture at GV14. The CV40 increased statistically significantly only in the BA (45.49 to 50.41, p = 0.003 ). No change was observed in BP (106.83 to 107.08 (mmHg), p = 0.335 ) and HR (77 to 75 (bpm), p = 0.431 ). Acupuncture at GV14 improved CBF velocity. These results could be explained by the regulation of endothelium-dependent vessel dilation effected by acupuncture. This trial is registered with Korean Clinical Trial Registry (http://cris.nih.go.kr; registration number: KCT0004787).


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Alister James McNeish ◽  
Kim Dora ◽  
Chris Garland

2018 ◽  
Vol 39 (8) ◽  
pp. 1570-1587 ◽  
Author(s):  
Christian Staehr ◽  
Lise Hangaard ◽  
Elena V Bouzinova ◽  
Sukhan Kim ◽  
Rajkumar Rajanathan ◽  
...  

Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/−G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/−G301R and WT showed similar contractile responses. The Atp1a2+/−G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/−G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/−G301R mice had reduced resting blood flow through MCA in comparison with WT mice . FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.


2000 ◽  
Vol 278 (5) ◽  
pp. F839-F846 ◽  
Author(s):  
Evelyn M. Tolbert ◽  
Joseph Weisstuch ◽  
Helen D. Feiner ◽  
Lance D. Dworkin

The changes in renal hemodynamics that develop with aging in spontaneously hypertensive rats (SHR) were examined. Micropuncture studies revealed that glomerular capillary pressure was elevated in SHR at 9 mo of age compared with 3-mo-old SHR and 9-mo-old normotensive Wistar-Kyoto rats. Glomerular hypertension developed because of a small increase in systemic blood pressure and a decline in preglomerular vascular resistance, allowing transmission of elevated systemic pressure to the glomerular capillaries. The hemodynamic alterations were not a compensatory response to injury, inasmuch as vascular and glomerular morphology were normal in 9-mo-old SHR. To determine the mechanism of these changes, the activity of several vasoactive systems was examined. Similar changes in renal hemodynamics were observed in young and old SHR after blockade of nitric oxide production and after intravenous administration of endothelin. However, ANG II produced a proportionally greater reduction in glomerular filtration rate than renal blood flow in older SHR. These data suggest that reduced endogenous activity of the renin-angiotensin system leads to glomerular hypertension in aging SHR. Late development of glomerular hypertension may contribute to the subsequent appearance of glomerular sclerosis and progressive renal failure in these rats.


1981 ◽  
Vol 241 (6) ◽  
pp. H821-H828
Author(s):  
F. A. De Lano ◽  
B. W. Zweifach

Studies on pressure dynamics in rats under local anesthesia were carried out to provide background information for subsequent intravital analysis of microvascular behavior in a skeletal muscle. An alpha-chloralose-urethan mixture (1:13.3%) was selected as the general anesthesia having the least effect on systemic pressures in spontaneous hypertensive (SHR) as well as normotensive (WKY), Sprague-Dawley and Wistar-Kyoto rats. Anesthetic agents, in general, lower systemic blood pressure in SHR by 30—50 mmHg and thereby distort microcirculatory flow and blood vessel-diameter relationships. Insertion of a plastic catheter into the trachea of the anesthetized rat, to maintain an open airway, had a complex effect on heart rate and systemic blood pressure and left the pressure in an unstable state. Severity of the change depended on the age of the rat and the anesthetic agent; hypertensive animals were especially vulnerable.


Sign in / Sign up

Export Citation Format

Share Document