scholarly journals Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relaxation to hydrogen peroxide

2010 ◽  
Vol 299 (4) ◽  
pp. H1235-H1241 ◽  
Author(s):  
Boon Hwa Neo ◽  
Sharath Kandhi ◽  
Michael S. Wolin

We have previously provided evidence that hydrogen peroxide (H2O2) stimulates soluble guanylate cyclase (sGC) under conditions where it relaxes isolated endothelium-removed bovine pulmonary arteries (BPAs). Since it was recently reported that H2O2 induces coronary vasorelaxation associated with a nitric oxide/cGMP-independent thiol oxidation/subunit dimerization-elicited activation of protein kinase G (PKG), we investigated whether this mechanism participates in the relaxation of BPAs to H2O2. BPAs precontracted with serotonin (incubated under hypoxia to lower endogenous H2O2) were exposed to increasing concentrations of H2O2. It was observed that 0.1–1 mM H2O2 caused increased PKG dimerization and relaxation. These responses were associated with increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at the serine-239 site known to be mediated by PKG. Treatment of BPAs with 1 mM DTT attenuated PKG dimerization, VASP phosphorylation, and relaxation to H2O2. An organoid culture of BPAs for 48 h with 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a heme oxidant inhibitor of sGC activation, depleted sGC expression by 85%, associated with a 67% attenuation of VASP phosphorylation and 48% inhibition of relaxation elicited by 100 μM H2O2. Thus both a sGC activation/cGMP-dependent and a thiol oxidation subunit dimerization/cGMP-independent activation of PKG appear to contribute to the relaxation of BPAs elicited by H2O2.

2013 ◽  
Vol 305 (3) ◽  
pp. H330-H343 ◽  
Author(s):  
Boon Hwa Neo ◽  
Dhara Patel ◽  
Sharath Kandhi ◽  
Michael S. Wolin

The activity of glucose-6-phosphate dehydrogenase (G6PD) appears to control a vascular smooth muscle relaxing mechanism regulated through cytosolic NADPH oxidation. Since our recent studies suggest that thiol oxidation-elicited dimerization of the 1α form of protein kinase G (PKG1α) contributes to the relaxation of isolated endothelium-removed bovine pulmonary arteries (BPA) to peroxide and responses to hypoxia, we investigated whether cytosolic NADPH oxidation promoted relaxation by PKG1α dimerization. Relaxation of BPA to G6PD inhibitors 6-aminonicotinamide (6-AN) and epiandrosterone (studied under hypoxia to minimize basal levels of NADPH oxidation and PKG1α dimerization) was associated with increased PKG1α dimerization and PKG-mediated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Depletion of PKG1α by small inhibitory RNA (siRNA) inhibited relaxation of BPA to 6-AN and attenuated the increase in VASP phosphorylation. Relaxation to 6-AN did not appear to be altered by depletion of soluble guanylate cyclase (sGC). Depletion of G6PD, thioredoxin-1 (Trx-1), and Trx reductase-1 (TrxR-1) in BPA with siRNA increased PKG1α dimerization and VASP phosphorylation and inhibited force generation under aerobic and hypoxic conditions. Depletion of TrxR-1 with siRNA inhibited the effects of 6-AN and enhanced similar responses to peroxide. Peroxiredoxin-1 depletion by siRNA inhibited PKG dimerization to peroxide, but it did not alter PKG dimerization under hypoxia or the stimulation of dimerization by 6-AN. Thus regulation of cytosolic NADPH redox by G6PD appears to control PKG1α dimerization in BPA through its influence on Trx-1 redox regulation by the NADPH dependence of TrxR-1. NADPH regulation of PKG dimerization may contribute to vascular responses to hypoxia that are associated with changes in NADPH redox.


Endocrinology ◽  
2014 ◽  
Vol 155 (12) ◽  
pp. 4720-4730 ◽  
Author(s):  
Jisha Joshua ◽  
Gerburg K. Schwaerzer ◽  
Hema Kalyanaraman ◽  
Esther Cory ◽  
Robert L. Sah ◽  
...  

Osteoporosis is a major health problem leading to fractures that cause substantial morbidity and mortality. Current osteoporosis therapies have significant drawbacks, creating a need for novel bone-anabolic agents. We previously showed that the nitric oxide/cyclic GMP (cGMP)/protein kinase G pathway mediates some of the anabolic effects of estrogens and mechanical stimulation in osteoblasts and osteocytes, leading us to hypothesize that cGMP-elevating agents may have bone-protective effects. We tested cinaciguat, a prototype of a novel class of soluble guanylate cyclase activators, in a mouse model of estrogen deficiency-induced osteoporosis. Compared with sham-operated mice, ovariectomized mice had lower serum cGMP concentrations, which were largely restored to normal by treatment with cinaciguat or low-dose 17β-estradiol. Microcomputed tomography of tibiae showed that cinaciguat significantly improved trabecular bone microarchitecture in ovariectomized animals, with effect sizes similar to those obtained with estrogen replacement therapy. Cinaciguat reversed ovariectomy-induced osteocyte apoptosis as efficiently as estradiol and enhanced bone formation parameters in vivo, consistent with in vitro effects on osteoblast proliferation, differentiation, and survival. Compared with 17β-estradiol, which completely reversed the ovariectomy-induced increase in osteoclast number, cinaciguat had little effect on osteoclasts. Direct guanylate cyclase stimulators have been extremely well tolerated in clinical trials of cardiovascular diseases, and our findings provide proof-of-concept for this new class of drugs as a novel, anabolic treatment strategy for postmenopausal osteoporosis, confirming an important role of nitric oxide/cGMP/protein kinase G signaling in bone.


2002 ◽  
Vol 283 (3) ◽  
pp. G747-G756 ◽  
Author(s):  
Ravinder K. Gill ◽  
Seema Saksena ◽  
Irfan Ali Syed ◽  
Sangeeta Tyagi ◽  
Waddah A. Alrefai ◽  
...  

The effect of nitric oxide (NO) on Na+/H+ exchange (NHE) activity was investigated utilizing Caco-2 cells as an experimental model. Incubation of Caco-2 cells with 10−3 M S-nitroso- N-acetylpenicillamine (SNAP), a conventional donor of NO, for 20 min resulted in a ∼45% dose-dependent decrease in NHE activity, as determined by assay of ethylisopropylamiloride-sensitive 22Na uptake. A similar decrease in NHE activity was observed utilizing another NO-specific donor, sodium nitroprusside. SNAP-mediated inhibition of NHE activity was not secondary to a loss of cell viability. NHE3 activity was significantly reduced by SNAP ( P < 0.05), whereas NHE2 activity was essentially unaltered. The effects of SNAP were mediated by the cGMP-dependent signal transduction pathway as follows: 1) LY-83583 and 1 H-(1,2,4)oxadiazolo(4,3- a)quinoxalin-1-one (ODQ), specific inhibitors of soluble guanylate cyclase, blocked the inhibitory effect of SNAP on NHE; 2) 8-bromo-cGMP mimicked the effects of SNAP on NHE activity; 3) the SNAP-induced decrease in NHE activity was counteracted by a specific protein kinase G inhibitor, KT-5823 (1 μM); 4) chelerythrine chloride (2 μM) or calphostin C (200 nM), specific protein kinase C inhibitors, did not affect inhibition of NHE activity by SNAP; 5) there was no cross activation by the protein kinase A-dependent pathway, as the inhibitory effects of SNAP were not blocked by Rp-cAMPS (25 μM), a specific protein kinase A inhibitor. These data provide novel evidence that NO inhibits NHE3 activity via activation of soluble guanylate cyclase, resulting in an increase in intracellular cGMP levels and activation of protein kinase G.


2006 ◽  
Vol 290 (3) ◽  
pp. L549-L557 ◽  
Author(s):  
Christopher J. Mingone ◽  
Sachin A. Gupte ◽  
Noorjahan Ali ◽  
Richard A. Oeckler ◽  
Michael S. Wolin

The mechanisms through which thiol oxidation and cellular redox influence the regulation of soluble guanylate cyclase (sGC) are poorly understood. This study investigated whether promoting thiol oxidation via inhibition of NADPH generation by the pentose phosphate pathway (PPP) with 1 mM 6-aminonicotinamide (6-AN) or the thiol oxidant diamide (1 mM) alters sGC activity and cGMP-associated relaxation to nitric oxide (NO) donors [ S-nitroso- N-acetylpenicillamine (SNAP) and spermine-NONOate]. Diamide and 6-AN inhibited NO-elicited relaxation of endothelium-denuded bovine pulmonary arteries (BPA) and stimulation of sGC activity in BPA homogenates. Treatment of BPA with the thiol reductant DTT (1 mM) reversed inhibition of NO-mediated relaxation and sGC stimulation by 6-AN. The increase in cGMP protein kinase-associated phosphorylation of vasodilator-stimulated phosphoprotein on Ser239 elicited by 10 μM SNAP was also inhibited by diamide. Activation of sGC by SNAP was attenuated by low micromolar concentrations of GSSG in concentrated, but not dilute, homogenates of BPA, suggesting that an enzymatic process contributes to the actions of GSSG. Relaxation to agents that function through cAMP (forskolin and isoproterenol) was not altered by inhibition of the pentose phosphate pathway or diamide. Thus a thiol oxidation mechanism controlled by the regulation of thiol redox by NADPH generated via the pentose phosphate pathway appears to inhibit sGC activation and cGMP-mediated relaxation by NO in a manner consistent with its function as an important physiological redox-mediated regulator of vascular function.


Endocrinology ◽  
2003 ◽  
Vol 144 (7) ◽  
pp. 3114-3129 ◽  
Author(s):  
Nikki P. Y. Lee ◽  
C. Yan Cheng

Abstract Nitric oxide (NO) synthase (NOS) catalyzes the oxidation of l-arginine to NO. NO plays a crucial role in regulating various physiological functions, possibly including junction dynamics via its effects on cAMP and cGMP, which are known modulators of tight junction (TJ) dynamics. Although inducible NOS (iNOS) and endothelial NOS (eNOS) are found in the testis and have been implicated in the regulation of spermatogenesis, their role(s) in TJ dynamics, if any, is not known. When Sertoli cells were cultured at 0.5–1.2 × 106 cells/cm2 on Matrigel-coated dishes or bicameral units, functional TJ barrier was formed when the barrier function was assessed by quantifying transepithelial electrical resistance across the cell epithelium. The assembly of the TJ barrier was shown to associate with a significant plummeting in the levels of iNOS and eNOS, seemingly suggesting that their presence by producing NO might perturb TJ assembly. To further confirm the role of NOS on the TJ barrier function in vitro, zinc (II) protoporphyrin-IX (ZnPP), an NOS inhibitor and a soluble guanylate cyclase inhibitor, was added to the Sertoli cell cultures during TJ assembly. Indeed, ZnPP was found to facilitate the assembly and maintenance of the Sertoli cell TJ barrier, possibly by inducing the production of TJ-associated proteins, such as occludin. Subsequent studies by immunoprecipitation and immunoblotting have shown that iNOS and eNOS are structurally linked to TJ-integral membrane proteins, such as occludin, and cytoskeletal proteins, such as actin, vimentin, and α-tubulin. When the cAMP and cGMP levels in these ZnPP-treated samples were quantified, a ZnPP-induced reduction of intracellular cGMP, but not cAMP, was indeed detected. Furthermore, 8-bromo-cGMP, a cell membrane-permeable analog of cGMP, could also perturb the TJ barrier dose dependently similar to the effects of 8-bromo-cAMP. KT-5823, a specific inhibitor of protein kinase G, was shown to facilitate the Sertoli cell TJ barrier assembly. Cytokines, such as TGF-β and TNF-α, known to perturb the Sertoli cell TJ barrier, were also shown to stimulate Sertoli cell iNOS and eNOS expression dose dependently in vitro. Collectively, these results illustrate NOS is an important physiological regulator of TJ dynamics in the testis, exerting its effects via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway.


2011 ◽  
Vol 301 (6) ◽  
pp. H2295-H2304 ◽  
Author(s):  
Boon Hwa Neo ◽  
Sharath Kandhi ◽  
Michael S. Wolin

We previously reported that isolated endothelium-removed bovine pulmonary arteries (BPAs) contract to hypoxia associated with removal of peroxide- and cGMP-mediated relaxation. In contrast, bovine coronary arteries (BCAs) relax to hypoxia associated with cytosolic NADPH oxidation coordinating multiple relaxing mechanisms. Since we recently found that H2O2 relaxes BPAs through PKG activation by both soluble guanylate cyclase (sGC)/cGMP-dependent and cGMP-independent thiol oxidation/subunit dimerization mechanisms, we investigated if these mechanisms participate in BPA contraction and BCA relaxation to hypoxia. The contraction of BPA (precontracted with 20 mM KCl) to hypoxia was associated with decreased PKG dimerization and PKG-mediated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. In contrast, exposure of 20 mM KCl-precontracted endothelium-removed BCAs to hypoxia caused relaxation and increased dimerization and VASP phosphorylation. Depletion of sGC by organoid culture of BPAs with an oxidant of the sGC heme (10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) increased aerobic force generation, decreased VASP phosphorylation, and inhibited further contraction to hypoxia and changes in VASP phosphorylation. Thiol reduction with dithiothreitol increased aerobic force in BPAs and decreased PKG dimerization, VASP phosphorylation, and the contraction to hypoxia. Furthermore, PKG-1α and sGC β1-subunit small interfering RNA-transfected BPAs demonstrated increased aerobic K+ force and inhibition of further contraction to hypoxia, associated with an attenuation of H2O2-elicited relaxation and VASP phosphorylation. Thus, decreases in both a sGC/cGMP-dependent and a dimerization-dependent activation of PKG by H2O2 appear to contribute to the contraction of BPAs elicited by hypoxia. In addition, stimulation of PKG activation by dimerization may be important in the relaxation of coronary arteries to hypoxia.


2014 ◽  
Vol 306 (4) ◽  
pp. L383-L391 ◽  
Author(s):  
Dhara Patel ◽  
Sharath Kandhi ◽  
Melissa Kelly ◽  
Boon Hwa Neo ◽  
Michael S. Wolin

The activity of glucose-6-phosphate dehydrogenase (G6PD) controls a vascular smooth muscle relaxing mechanism promoted by the oxidation of cytosolic NADPH, which has been associated with activation of the 1α form of protein kinase G (PKG-1α) by a thiol oxidation-elicited subunit dimerization. This PKG-1α-activation mechanism appears to contribute to responses of isolated endothelium-removed bovine pulmonary arteries (BPA) elicited by peroxide, cytosolic NADPH oxidation resulting from G6PD inhibition, and hypoxia. Dehydroepiandrosterone (DHEA) is a steroid hormone with pulmonary vasodilator activity, which has beneficial effects in treating pulmonary hypertension. Because multiple mechanisms have been suggested for the vascular effects of DHEA and one of the known actions of DHEA is inhibiting G6PD, we investigated whether it promoted relaxation associated with NADPH oxidation, PKG-1α dimerization, and PKG activation detected by increased vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Relaxation of BPA to DHEA under aerobic or hypoxic conditions was associated with NADPH oxidation, PKG-1α dimerization, and increased VASP phosphorylation. The vasodilator activity of DHEA was markedly attenuated in pulmonary arteries and aorta from a PKG knockin mouse containing a serine in place of a cysteine involved in PKG dimerization. DHEA promoted increased PKG dimerization in lungs from wild-type mice, which was not detected in the PKG knockin mouse model. Thus PKG-1α dimerization is a major contributing factor to the vasodilator actions of DHEA and perhaps its beneficial effects in treating pulmonary hypertension.


2006 ◽  
Vol 291 (3) ◽  
pp. L337-L344 ◽  
Author(s):  
Christopher J. Mingone ◽  
Sachin A. Gupte ◽  
Joseph L. Chow ◽  
Mansoor Ahmad ◽  
Nader G. Abraham ◽  
...  

Protoporphyrin IX is an activator of soluble guanylate cyclase (sGC), but its role as an endogenous regulator of vascular function through cGMP has not been previously reported. In this study we examined whether the heme precursor δ-aminolevulinic acid (ALA) could regulate vascular force through promoting protoporphyrin IX-elicited activation of sGC. Exposure of endothelium-denuded bovine pulmonary arteries (BPA) in organoid culture to increasing concentrations of the heme precursor ALA caused a concentration-dependent increase in BPA epifluorescence, consistent with increased tissue protoporphyrin IX levels, associated with decreased force generation to increasing concentrations of serotonin. The force-depressing actions of 0.1 mM ALA were associated with increased cGMP-associated vasodilator-stimulated phosphoprotein (VASP) phosphorylation and increased sGC activity in homogenates of BPA cultured with ALA. Increasing iron availability with 0.1 mM FeSO4 inhibited the decrease in contraction to serotonin and increase in sGC activity caused by ALA, associated with decreased protoporphyrin IX and increased heme. Chelating endogenous iron with 0.1 mM deferoxamine increased the detection of protoporphyrin IX and force depressing activity of 10 μM ALA. The inhibition of sGC activation with the heme oxidant 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) attenuated the force depressing actions of an NO donor without altering the actions of ALA. Thus control of endogenous formation of protoporphyrin IX from ALA by the availability of iron is potentially a novel physiological mechanism of controlling vascular function through regulating the activity of sGC.


Sign in / Sign up

Export Citation Format

Share Document