organoid culture
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 131)

H-INDEX

25
(FIVE YEARS 8)

2022 ◽  
Vol 11 ◽  
Author(s):  
Mattia Marinucci ◽  
Caner Ercan ◽  
Stephanie Taha-Mehlitz ◽  
Lana Fourie ◽  
Federica Panebianco ◽  
...  

The use of patient-derived organoids (PDO) as a valuable alternative to in vivo models significantly increased over the last years in cancer research. The ability of PDOs to genetically resemble tumor heterogeneity makes them a powerful tool for personalized drug screening. Despite the extensive optimization of protocols for the generation of PDOs from colorectal tissue, there is still a lack of standardization of tissue handling prior to processing, leading to microbial contamination of the organoid culture. Here, using a cohort of 16 patients diagnosed with colorectal carcinoma (CRC), we aimed to test the efficacy of phosphate-buffered saline (PBS), penicillin/streptomycin (P/S), and Primocin, alone or in combination, in preventing organoid cultures contamination when used in washing steps prior to tissue processing. Each CRC tissue was divided into 5 tissue pieces, and treated with each different washing solution, or none. After the washing steps, all samples were processed for organoid generation following the same standard protocol. We detected contamination in 62.5% of the non-washed samples, while the use of PBS or P/S-containing PBS reduced the contamination rate to 50% and 25%, respectively. Notably, none of the organoid cultures washed with PBS/Primocin-containing solution were contaminated. Interestingly, addition of P/S to the washing solution reduced the percentage of living cells compared to Primocin. Taken together, our results demonstrate that, prior to tissue processing, adding Primocin to the tissue washing solution is able to eliminate the risk of microbial contamination in PDO cultures, and that the use of P/S negatively impacts organoids growth. We believe that our easy-to-apply protocol might help increase the success rate of organoid generation from CRC patients.


Author(s):  
Shikha Chaudhary ◽  
Eliza Chakraborty

Abstract Background Evolution in the in vitro cell culture from conventional 2D to 3D technique has been a significant accomplishment. The 3D culture models have provided a close and better insight into the physiological study of the human body. The increasing demand for organs like liver, kidney, and pancreas for transplantation, rapid anti-cancer drug screening, and the limitations associated with the use of animal models have attracted the interest of researchers to explore 3D organ culture. Main body Natural, synthetic, and hybrid material-based hydrogels are being used as scaffolds in 3D culture and provide 'close-to-in vivo’ structures. Organoids: the stem cell-derived small size 3D culture systems are now favored due to their ability to mimic the in-vivo conditions of organ or tissue and this characteristic has made it eligible for a variety of clinical applications, drug discovery and regenerative medicine are a few of the many areas of application. The use of animal models for clinical applications has been a long-time ethical and biological challenge to get accurate outcomes. 3D bioprinting has resolved the issue of vascularization in organoid culture to a great extent by its layer-by-layer construction approach. The 3D bioprinted organoids have a popular application in personalized disease modeling and rapid drug development and therapeutics. Short conclusions This review paper, focuses on discussing the novel organoid culture approach, its advantages and limitations, and potential applications in a variety of life science areas namely cancer research, cell therapy, tissue engineering, and personalized medicine and drug discovery. Graphical Abstract


2022 ◽  
Vol 15 (1) ◽  
pp. 101251
Author(s):  
Swetha J. Sundar ◽  
Sajina Shakya ◽  
Austin Barnett ◽  
Lisa C. Wallace ◽  
Hyemin Jeon ◽  
...  

Author(s):  
Atsushi Masui ◽  
Toyohiro Hirai ◽  
Shimpei Gotoh

AbstractThe absence of in vitro platforms for human pulmonary toxicology studies is becoming an increasingly serious concern. The respiratory system has a dynamic mechanical structure that extends from the airways to the alveolar region. In addition, the epithelial, endothelial, stromal, and immune cells are highly organized in each region and interact with each other to function synergistically. These cells of varied lineage, particularly epithelial cells, have been difficult to use for long-term culture in vitro, thus limiting the development of useful experimental tools. This limitation has set a large distance between the bench and the bedside for analyzing the pathogenic mechanisms, the efficacy of candidate therapeutic agents, and the toxicity of compounds. Several researchers have proposed solutions to these problems by reporting on methods for generating human lung epithelial cells derived from pluripotent stem cells (PSCs). Moreover, the use of organoid culture, organ-on-a-chip, and material-based techniques have enabled the maintenance of functional PSC-derived lung epithelial cells as well as primary cells. The aforementioned technological advances have facilitated the in vitro recapitulation of genetic lung diseases and the detection of ameliorating or worsening effects of genetic and chemical interventions, thus indicating the future possibility of more sophisticated preclinical compound assessments in vitro. In this review, we will update the recent advances in lung cell culture methods, principally focusing on human PSC-derived lung epithelial organoid culture systems with the hope of their future application in toxicology studies.


ACS Omega ◽  
2021 ◽  
Author(s):  
Humendra Poudel ◽  
Karie Sanford ◽  
Peter K. Szwedo ◽  
Rupak Pathak ◽  
Anindya Ghosh

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Xiao ◽  
Jianqing Liang ◽  
Sunqiang Liu ◽  
Qiongyue Zhang ◽  
Famin Xie ◽  
...  

Hashimoto’s thyroiditis (HT) is an autoimmune disease, and its incidence continues to rise. Although scientists have studied this disease for many years and discovered the potential effects of various proteins in it, the specific pathogenesis is still not fully comprehended. To understand HT and translate this knowledge to clinical applications, we took the mass spectrometric analysis on thyroid tissue fine-needle puncture from HT patients and healthy people in an attempt to make a further understanding of the pathogenesis of HT. A total of 44 proteins with differential expression were identified in HT patients, and these proteins play vital roles in cell adhesion, cell metabolism, and thyroxine synthesis. Combining patient clinical trial sample information, we further compared the transient changes of gene expression regulation in HT and papillary thyroid carcinoma (PTC) samples. More importantly, we developed patient-derived HT and PTC organoids as a promising new preclinical model to verify these potential markers. Our data revealed a marked characteristic of HT organoid in upregulating chemokines that include C-C motif chemokine ligand (CCL) 2 and CCL3, which play a key role in the pathogenesis of HT. Overall, our research has enriched everyone’s understanding of the pathogenesis of HT and provides a certain reference for the treatment of the disease.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark T. Kozlowski ◽  
Christiana J. Crook ◽  
Hsun Teresa Ku

AbstractOrganoids—cellular aggregates derived from stem or progenitor cells that recapitulate organ function in miniature—are of growing interest in developmental biology and medicine. Organoids have been developed for organs and tissues such as the liver, gut, brain, and pancreas; they are used as organ surrogates to study a wide range of questions in basic and developmental biology, genetic disorders, and therapies. However, many organoids reported to date have been cultured in Matrigel, which is prepared from the secretion of Engelbreth-Holm-Swarm mouse sarcoma cells; Matrigel is complex and poorly defined. This complexity makes it difficult to elucidate Matrigel-specific factors governing organoid development. In this review, we discuss promising Matrigel-free methods for the generation and maintenance of organoids that use decellularized extracellular matrix (ECM), synthetic hydrogels, or gel-forming recombinant proteins.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi201-vi201
Author(s):  
Swetha Sundar ◽  
Sajina Shakya ◽  
Lisa Wallace ◽  
Austin Barnett ◽  
Andrew Sloan ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. The inherent cellular diversity and interactions within tumor microenvironments represent a significant challenge to effective treatment. Traditional culture methods may mask the complexity of such interactions while three-dimensional (3D) organoid culture systems derived from patient cancer stem cells (CSCs) can preserve cellular complexity and microenvironments. Our objective was to determine whether organoid cultures show increased patterns of resistance to potential clinical therapies compared to traditional sphere cultures. METHODS Adult and pediatric surgical specimens were collected and established as 3D organoids. We created organoid microarrays and visualized bulk and spatially defined differences in cell proliferation using immunohistochemistry (IHC) staining, as well as cell cycle analysis by flow cytometry with 3D regional labeling. We tested the response of CSCs grown in each culture method to temozolomide, ibrutinib, lomustine, ruxolitinib, and radiotherapy using proliferative and viability assays. RESULTS Compared to sphere cultures from the same patient, organoids showed diverse proliferative cell populations and broad resistance to all therapies tested, albeit with both intraspecimen and interspecimen variability in the extent of resistance. Organoid specimens demonstrated a blunt response to current GBM standard of care therapy (combination temozolomide and radiotherapy) and maintained both cellular proliferation in their outer rim and overall structure and viability compared to the matched sphere specimens. CONCLUSIONS Our results suggest that growth of tumor specimens as organoid cultures may better reflect the cellular diversity and clinical reality of GBM therapeutic response. Patient-derived GBM organoids offer a valuable complement to traditional culture methods and may have powerful predictive capability of personalized drug sensitivities and therapeutic resistance.


iScience ◽  
2021 ◽  
pp. 103440
Author(s):  
Biyun Zheng ◽  
Kyung-Pil Ko ◽  
Xuefen Fang ◽  
Xiaozhong Wang ◽  
Jie Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document