scholarly journals Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation

2003 ◽  
Vol 284 (2) ◽  
pp. H549-H558 ◽  
Author(s):  
Jacques Levraut ◽  
Hirotaro Iwase ◽  
Z.-H. Shao ◽  
Terry L. Vanden Hoek ◽  
Paul T. Schumacker

Ischemia-reperfusion injury induces cell death, but the responsible mechanisms are not understood. This study examined mitochondrial depolarization and cell death during ischemia and reperfusion. Contracting cardiomyocytes were subjected to 60-min ischemia followed by 3-h reperfusion. Mitochondrial membrane potential (ΔΨm) was assessed with tetramethylrhodamine methyl ester. During ischemia, ΔΨm decreased to 24 ± 5.5% of baseline, but no recovery was evident during reperfusion. Cell death assessed by Sytox Green was minimal during ischemia but averaged 66 ± 7% after 3-h reperfusion. Cyclosporin A, an inhibitor of mitochondrial permeability transition, was not protective. However, pharmacological antioxidants attenuated the fall in ΔΨm during ischemia and cell death after reperfusion and decreased lipid peroxidation as assessed with C11-BODIPY. Cell death was also attenuated when residual O2 was scavenged from the perfusate, creating anoxic ischemia. These results suggested that reactive oxygen species (ROS) were important for the decrease in ΔΨm during ischemia. Finally, 143B-ρ0 osteosarcoma cells lacking a mitochondrial electron transport chain failed to demonstrate a depletion of ΔΨm during ischemia and were significantly protected against cell death during reperfusion. Collectively, these studies identify a central role for mitochondrial ROS generation during ischemia in the mitochondrial depolarization and subsequent cell death induced by ischemia and reperfusion in this model.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Dipayan Chaudhuri ◽  
David E Clapham

Studies of cardiomyocyte death during calcium overload induced by ischemia-reperfusion injury or heart failure have implicated the mitochondrial permeability transition as a key pathway. During the permeability transition, an opening of a channel in the inner membrane leads to mitochondrial depolarization and swelling. Despite extensive studies in mammalian systems, the machinery responsible for this phenomenon remains only partially identified. If present in non-mammalian species, the components of the permeability transition may be further elucidated, given potential advantages within these systems for high-throughput screens. However, the existence of a permeability transition remains controversial in non-mammalian organisms. In Drosophila , prior studies have documented calcium-induced mitochondrial depolarization, but no obvious swelling. Here we show that Drosophila S2R+ cells do possess the machinery for permeability transition, but that the threshold for a calcium trigger is significantly higher than in mammalian systems. Using a calcein-loading method, we show that Drosophila permeability transition can be triggered by calcium overload, using ionomycin, and by cysteine oxidation, using phenylarsine oxide. As in mammalian systems, blockade of mitochondrial cyclophilin or the ATP/ADP transporter appears to inhibit the Drosophila permeability transition. Finally, we examine three alternative hypotheses that may explain these differences in permeability transition. First, we test if perturbing the pathways for calcium influx into S2R+ mitochondria can trigger this phenomenon. Second, we test if the discrepancy in the calcium threshold is due to structural differences in the key regulators, particularly the mitochondrial cyclophilin. Third, we compare Drosophila and human genomes to see if any novel molecules may be responsible for setting the lower threshold for calcium-induced permeability transition in mammalian cells. Since the Drosophila cells possess such significant resistance to permeability transition, the results of our investigations suggest potential new strategies for the development of therapeutics inhibiting mitochondrial permeability transition in cardiac calcium-induced injury.


2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Stefano Comità ◽  
Saveria Femmino ◽  
Cecilia Thairi ◽  
Giuseppe Alloatti ◽  
Kerstin Boengler ◽  
...  

AbstractIschemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1863
Author(s):  
Joseph Flores-Toro ◽  
Sung-Kook Chun ◽  
Jun-Kyu Shin ◽  
Joan Campbell ◽  
Melissa Lichtenberger ◽  
...  

Ischemia/reperfusion (I/R) injury unavoidably occurs during hepatic resection and transplantation. Aged livers poorly tolerate I/R during surgical treatment. Although livers have a powerful endogenous inhibitor of calpains, calpastatin (CAST), I/R activates calpains, leading to impaired autophagy, mitochondrial dysfunction, and hepatocyte death. It is unknown how I/R in aged livers affects CAST. Human and mouse liver biopsies at different ages were collected during in vivo I/R. Hepatocytes were isolated from 3-month- (young) and 26-month-old (aged) mice, and challenged with short in vitro simulated I/R. Cell death, protein expression, autophagy, and mitochondrial permeability transition (MPT) between the two age groups were compared. Adenoviral vector was used to overexpress CAST. Significant cell death was observed only in reperfused aged hepatocytes. Before the commencement of ischemia, CAST expression in aged human and mouse livers and mouse hepatocytes was markedly greater than that in young counterparts. However, reperfusion substantially decreased CAST in aged human and mouse livers. In hepatocytes, reperfusion rapidly depleted aged cells of CAST, cleaved autophagy-related protein 5 (ATG5), and induced defective autophagy and MPT onset, all of which were blocked by CAST overexpression. Furthermore, mitochondrial morphology was shifted toward an elongated shape with CAST overexpression. In conclusion, CAST in aged livers is intrinsically short-lived and lost after short I/R. CAST depletion contributes to age-dependent liver injury after I/R.


2008 ◽  
Vol 88 (2) ◽  
pp. 581-609 ◽  
Author(s):  
Elizabeth Murphy ◽  
Charles Steenbergen

Mitochondria play an important role in cell death and cardioprotection. During ischemia, when ATP is progressively depleted, ion pumps cannot function resulting in a rise in calcium (Ca2+), which further accelerates ATP depletion. The rise in Ca2+during ischemia and reperfusion leads to mitochondrial Ca2+accumulation, particularly during reperfusion when oxygen is reintroduced. Reintroduction of oxygen allows generation of ATP; however, damage to the electron transport chain results in increased mitochondrial generation of reactive oxygen species (ROS). Mitochondrial Ca2+overload and increased ROS can result in opening of the mitochondrial permeability transition pore, which further compromises cellular energetics. The resultant low ATP and altered ion homeostasis result in rupture of the plasma membrane and cell death. Mitochondria have long been proposed as central players in cell death, since the mitochondria are central to synthesis of both ATP and ROS and since mitochondrial and cytosolic Ca2+overload are key components of cell death. Many cardioprotective mechanisms converge on the mitochondria to reduce cell death. Reducing Ca2+overload and reducing ROS have both been reported to reduce ischemic injury. Preconditioning activates a number of signaling pathways that reduce Ca2+overload and reduce activation of the mitochondrial permeability transition pore. The mitochondrial targets of cardioprotective signals are discussed in detail.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huang Huang ◽  
Songqing Lai ◽  
Yong Luo ◽  
Qing Wan ◽  
Qicai Wu ◽  
...  

Apigenin (Api), a natural flavone found in high amounts in several herbs, has shown potent cardioprotective effects in clinical studies, although the underlying mechanisms are not clear. We hypothesized that Api protects the myocardium from simulated ischemia/reperfusion (SI/R) injury via nutritional preconditioning (NPC). Rats fed with Api-containing food showed improvement in cardiac functions; lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) activities; infarct size; apoptosis rates; malondialdehyde (MDA) levels; caspase-3, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities; and ferric reducing antioxidant power (FRAP) compared to those fed standard chow following SI/R injury. In addition, Api pretreatment significantly improved the viability, decreased the LDH activity and intracellular reactive oxygen species (ROS) generation, alleviated the loss of mitochondrial membrane potential (MMP), prevented the opening of the mitochondrial permeability transition pore (mPTP), and decreased the caspase-3 activity, cytochrome c (Cyt C) release, and apoptosis induced by SI/R in primary cardiomyocytes. Mechanistically, Api upregulated Hes1 expression and was functionally neutralized by the Notch1 γ-secretase inhibitor GSI, as well as the mPTP opener atractyloside (Atr). Taken together, Api protected the myocardium against SI/R injury via the mitochondrial pathway mediated by the Notch1/Hes1 signaling pathway.


2015 ◽  
Vol 308 (6) ◽  
pp. F579-F587 ◽  
Author(s):  
David Taylor ◽  
Sunil Bhandari ◽  
Anne-Marie L. Seymour

Uremic cardiomyopathy (UCM) is characterized by metabolic remodelling, compromised energetics, and loss of insulin-mediated cardioprotection, which result in unsustainable adaptations and heart failure. However, the role of mitochondria and the susceptibility of mitochondrial permeability transition pore (mPTP) formation in ischemia-reperfusion injury (IRI) in UCM are unknown. Using a rat model of chronic uremia, we investigated the oxidative capacity of mitochondria in UCM and their sensitivity to ischemia-reperfusion mimetic oxidant and calcium stressors to assess the susceptibility to mPTP formation. Uremic animals exhibited a 45% reduction in creatinine clearance ( P < 0.01), and cardiac mitochondria demonstrated uncoupling with increased state 4 respiration. Following IRI, uremic mitochondria exhibited a 58% increase in state 4 respiration ( P < 0.05), with an overall reduction in respiratory control ratio ( P < 0.01). Cardiomyocytes from uremic animals displayed a 30% greater vulnerability to oxidant-induced cell death determined by FAD autofluorescence ( P < 0.05) and reduced mitochondrial redox state on exposure to 200 μM H2O2 ( P < 0.01). The susceptibility to calcium-induced permeability transition showed that maximum rates of depolarization were enhanced in uremia by 79%. These results demonstrate that mitochondrial respiration in the uremic heart is chronically uncoupled. Cardiomyocytes in UCM are characterized by a more oxidized mitochondrial network, with greater susceptibility to oxidant-induced cell death and enhanced vulnerability to calcium-induced mPTP formation. Collectively, these findings indicate that mitochondrial function is compromised in UCM with increased vulnerability to calcium and oxidant-induced stressors, which may underpin the enhanced predisposition to IRI in the uremic heart.


2008 ◽  
Vol 295 (4) ◽  
pp. G823-G832 ◽  
Author(s):  
Zhi Zhong ◽  
Venkat K. Ramshesh ◽  
Hasibur Rehman ◽  
Robert T. Currin ◽  
Vijayalakshmi Sridharan ◽  
...  

The mitochondrial permeability transition (MPT) plays an important role in hepatocyte death caused by ischemia-reperfusion (IR). This study investigated whether activation of the cellular oxygen-sensing signal cascade by prolyl hydroxylase inhibitors (PHI) protects against the MPT after hepatic IR. Ethyl 3,4-dihyroxybenzoate (EDHB, 100 mg/kg ip), a PHI, increased mouse hepatic hypoxia-inducible factor-1α and heme oxygenase-1 (HO-1). EDHB-treated and untreated mice were subjected to 1 h of warm ischemia to ∼70% of the liver followed by reperfusion. Mitochondrial polarization, cell death, and the MPT were assessed by intravital confocal/multiphoton microscopy of rhodamine 123, propidium iodide, and calcein. EDHB largely blunted alanine aminotransferase (ALT) release and necrosis after reperfusion. In vehicle-treated mice at 2 h after reperfusion, viable cells with depolarized mitochondria were 72%, and dead cells were 2%, indicating that depolarization preceded necrosis. Mitochondrial voids excluding calcein disappeared, indicating MPT onset in vivo. NIM811, a specific inhibitor of the MPT, blocked mitochondrial depolarization after IR, further confirming that mitochondrial depolarization was due to MPT onset. EDHB decreased mitochondrial depolarization to 16% and prevented the MPT. Tin protoporphyrin (10 μmol/kg sc), an HO-1 inhibitor, partially abrogated protection by EDHB against ALT release, necrosis, and mitochondrial depolarization. In conclusion, IR causes the MPT and mitochondrial dysfunction, leading to hepatocellular death. PHI prevents MPT onset and liver damage through an effect mediated partially by HO-1.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Jasiel O Strubbe ◽  
Jason Schrad ◽  
James F Conway ◽  
Kristin N Parent ◽  
Jason N Bazil

Excessive Ca 2+ accumulation is the main source of cardiac tissue and cell death during myocardial ischemia-reperfusion injury (IR injury) and myocardial infarction. Calcium dysregulation and overload leads to mitochondrial dysfunction, excessive reactive oxygen species (ROS) production, catastrophic energy failure, and opening of the cyclosporine A-sensitive mitochondrial permeability transition pore (mPTP). Mitochondrial Ca 2+ accumulation also results in the formation of amorphous Ca 2+ -phosphate granules localized in the mitochondrial matrix. These amorphous electron-dense granules are main components of the mitochondrial Ca 2+ sequestration and buffering system by mechanisms not yet well understood. The two aims of the present study are to test the relationship of Ca 2+ -phosphate granule size and number in cardiac mitochondria 1) exposed to a bolus calcium sufficient to elicit permeabilization and 2) whether CsA-treated mitochondria alters granule formation and size. A time course series of CryoEM images was analyzed to follow the permeabilization process. CryoEM results showed that mitochondrial incubated for longer time-courses have increased number of small granules (40 - 110 nm), swelling, membrane rupture and induction of mPTP opening. Conversely, shorter incubation time resulted in less granules per mitochondrion yet of similar size (35 - 90 nm). CsA- treated mitochondria, on the other hand, showed bigger phosphate granules (120 - 160 nm), and both lower granules per mitochondria and mPTP opening susceptibility. These results suggest a novel mechanism for CsA in which Ca 2+ -phosphate granule sizes are enhanced while maintaining fewer per mitochondrion. This effect may explain why CsA-treated mitochondria have higher calcium tolerance, delayed Ca 2+ -dependent opening of the mPTP, and protects against reperfusion-induced myocardial necrosis.


Sign in / Sign up

Export Citation Format

Share Document