calcium overload
Recently Published Documents


TOTAL DOCUMENTS

487
(FIVE YEARS 91)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
Vol 36 ◽  
pp. 205873842110519
Author(s):  
Miaomiao Liu ◽  
Panpan Liu ◽  
Bin Zheng ◽  
Yu Liu ◽  
Li Li ◽  
...  

Objectives Alantolactone (AL) is a compound extracted from the roots of Inula Racemosa that has shown beneficial effects in cardiovascular disease. However, the cardioprotective mechanism of AL against hypoxic/ischemic (H/I) injury is still unclear. This research aimed to determine AL’s ability to protect the heart against isoproterenol (ISO)-induced MI injury in vivo and cobalt chloride (CoCl2) induced H/I injury in vitro. Methods Electrocardiography (ECG), lactate dehydrogenase (LDH), creatine kinase (CK), and cardiac troponin I (cTnI) assays in addition to histological analysis of the myocardium were used to investigate the effects of AL in vivo. Influences of AL on L-type Ca2+ current (ICa-L) in isolated rat myocytes were observed by the patch-clamp technique. Furthermore, cell viability, apoptosis, oxidative stress injury, mitochondrial membrane potential, and intracellular Ca2+ concentration were examined in vitro. Results The results indicated that AL treatment ameliorated the morphological and ECG changes associated with MI, and decreased levels of LDH, CK, and cTnI. Furthermore, pretreatment with AL elevated antioxidant enzyme activity and suppressed ROS production. AL prevented H/I-induced apoptosis, mitochondria damage, and calcium overload while reducing ICa-L in a concentration and time dependent fashion. The 50% inhibiting concentration (IC50) and maximal inhibitory effect (Emax) of AL were 17.29 μmol/L and 57.73 ± 1.05%, respectively. Conclusion AL attenuated MI-related injury by reducing oxidative stress, apoptosis, calcium overload, and mitochondria damage. These cardioprotective effects may be related to the direct inhibition of ICa-L.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weier Bao ◽  
Ming Liu ◽  
Jiaqi Meng ◽  
Siyuan Liu ◽  
Shuang Wang ◽  
...  

AbstractTargeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Lauren Crisman ◽  
Hirohito Shimizu ◽  
Adam Langenbacher ◽  
Jie Huang ◽  
Kevin Wang ◽  
...  

Mitochondria critically regulate cellular processes such as bioenergetics, metabolism, calcium homeostasis and apoptosis. VDAC proteins are abundant proteins that control the passage of ions and metabolites across the outer mitochondrial membrane. We have previously shown that activation of VDAC2, is able to buffer excess calcium and thereby suppress calcium overload induced arrhythmogenic events in vitro and in vivo. However, the mechanism by which VDAC2 regulates calcium transport and cardiac contractions remained unclear. It is also unclear whether all three VDAC isoforms (VDAC1,2 and 3) possess similar cardioprotective activity. The zebrafish tremblor/ncx1 mutant lacks functional NCX1 in cardiomyocytes leading to calcium overload, and the manifestation of fibrillation-like phenotypes. Using the tremblor/ncx1 mutant as a model, we observed isoform-specific differences between the VDAC family members. VDAC1 and VDAC2 enhanced mitochondrial calcium trafficking and restore rhythmic contraction in tremblor mutants, whereas, VDAC3 did not. We found that the differing rescue capabilities of VDAC proteins were dependent upon residues in their N-terminal halves. Phylogenetic analysis further revealed the presence of an evolutionarily conserved glutamate at position 73 (E73) within VDAC1 and VDAC2, but a glutamine (Q73) in VDAC3. Excitingly, we showed that replacing VDAC2 E73 with Q73 ablated its calcium transporting activity. Conversely, substituting the Q73 with E73 allows VDAC3 to gain calcium trafficking and cardioprotective abilities. Overall, our study demonstrates an essential role for the evolutionarily conserved glutamate-73 in determining the anti-arrhythmic effect of VDAC isoforms through their regulation of mitochondrial calcium uptake.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
David R Eberhardt ◽  
Xue Yin ◽  
Anthony Balynas ◽  
Sandra Lee ◽  
Maureen Walsh ◽  
...  

Mitochondrial dysfunction due to calcium overload is common in heart disease and results in heart failure. In a mouse model of mitochondrial cardiomyopathies we noted a substantial downregulation of the gene encoding for the EF hand containing domain 1 protein (EFHD1). EFHD1 is a mitochondrial protein which binds calcium and has been shown to stimulate both apoptosis and mitoflashes. These processes involve mitochondrial calcium overload. We therefore hypothesized that EFHD1 down regulation could represent a natural response by failing hearts to prevent mitochondrial calcium overload. We therefore studied the calcium handling properties of mice where Efhd1 had been knocked out (Efhd1-KO). These mice are viable and have no obvious adverse cardiac or metabolic phenotypes. We find that EFHD1 is expressed in the cytoplasm and mitochondrial outer membrane and intermembrane space. It associates strongly with endoplasmic reticulum (ER)-associated mitochondrial membranes. Moreover, mitochondria isolated from Efhd1-KO mice also exhibited 250±10 % improvement in calcium retention in liver but not heart, while neonatal mouse hearts were 3 times more resistant to hypoxia. These findings suggest that EFHD1 may modulate mitochondrial calcium uptake.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xing Chang ◽  
Shunyu Yao ◽  
Qiaomin Wu ◽  
Yanli Wang ◽  
Jinfeng Liu ◽  
...  

Sick sinus syndrome (SSS) is a disease with bradycardia or arrhythmia. The pathological mechanism of SSS is mainly due to the abnormal conduction function of the sinoatrial node (SAN) caused by interstitial lesions or fibrosis of the SAN or surrounding tissues, SAN pacing dysfunction, and SAN impulse conduction accompanied by SAN fibrosis. Tongyang Huoxue Decoction (TYHX) is widely used in SSS treatment and amelioration of SAN fibrosis. It has a variety of active ingredients to regulate the redox balance and mitochondrial quality control. This study mainly discusses the mechanism of TYHX in ameliorating calcium homeostasis disorder and redox imbalance of sinoatrial node cells (SANCs) and clarifies the protective mechanism of TYHX on the activity of SANCs. The activity of SANCs was determined by CCK-8 and the TUNEL method. The levels of apoptosis, ROS, and calcium release were analyzed by flow cytometry and immunofluorescence. The mRNA and protein levels of calcium channel regulatory molecules and mitochondrial quality control-related molecules were detected by real-time quantitative PCR and Western Blot. The level of calcium release was detected by laser confocal. It was found that after H/R treatment, the viability of SANCs decreased significantly, the levels of apoptosis and ROS increased, and the cells showed calcium overload, redox imbalance, and mitochondrial dysfunction. After treatment with TYHX, the cell survival level was improved, calcium overload and oxidative stress were inhibited, and mitochondrial energy metabolism and mitochondrial function were restored. However, after the SANCs were treated with siRNA (si-β-tubulin), the regulation of TYHX on calcium homeostasis and redox balance was counteracted. These results suggest that β-tubulin interacts with the regulation of mitochondrial function and calcium release. TYHX may regulate mitochondrial quality control, maintain calcium homeostasis and redox balance, and protect SANCs through β-tubulin. The regulation mechanism of TYHX on mitochondrial quality control may also become a new target for SSS treatment.


Biomaterials ◽  
2021 ◽  
pp. 121080
Author(s):  
Yonglu Li ◽  
Su Zhou ◽  
Haizhao Song ◽  
Ting Yu ◽  
Yuefei Wang ◽  
...  

2021 ◽  
Author(s):  
Dionísio Pedro Amorim Neto ◽  
Beatriz Pelegrini Bosque ◽  
João Vitor Pereira de Godoy ◽  
Paulla Vieira Rodrigues ◽  
Dario Donoso Meneses ◽  
...  

Abstract Background: The notion that the gut microbiota plays a role in neurodevelopment, behavior and outcome of neurodegenerative disorders is recently taking place. A number of studies have consistently reported a greater abundance of Akkermansia muciniphila in Parkinson’s disease (PD) fecal samples. Nevertheless, a functional link between A. muciniphila and sporadic PD remained unexplored. Here, we investigated whether A.muciniphila conditioned medium could initiate the misfolding process of α-synuclein (αSyn) in enteroendocrine cells (EECs), which are part of the gut epithelium and possess many neuron-like properties. Results: We found that A. muciniphila conditioned medium is directly modulated by mucin, induces intracellular calcium (Ca2+) release, and causes increased mitochondrial Ca2+ uptake in EECs, which in turn leads to production of reactive oxygen species (ROS) and αSyn aggregation. Indeed, oral administration of A. muciniphila cultivated in the absence of mucin to aged mice also led to αSyn aggregation in cholecystokinin (CCK)-positive enteroendocrine cells. Noteworthy, buffering mitochondrial Ca2+ reverted all the damaging effects observed. Conclusion: Thereby, these molecular insights provided here offer evidence that bacterial proteins are capable of inducing αSyn aggregation in enteroendocrine cells.


Sign in / Sign up

Export Citation Format

Share Document