scholarly journals Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension

2014 ◽  
Vol 307 (3) ◽  
pp. H273-H283 ◽  
Author(s):  
Aiping Liu ◽  
David Schreier ◽  
Lian Tian ◽  
Jens C. Eickhoff ◽  
Zhijie Wang ◽  
...  

Pulmonary arterial hypertension (PAH) results in right ventricular (RV) dysfunction and failure. Paradoxically, women are more frequently diagnosed with PAH but have better RV systolic function and survival rates than men. The mechanisms by which sex differences alter PAH outcomes remain unknown. Here, we sought to study the role of estrogen in RV functional remodeling in response to PAH. The SU5416-hypoxia (SuHx) mouse model of PAH was used. To study the role of estrogen, female mice were ovariectomized and then treated with estrogen or placebo. SuHx significantly increased RV afterload and resulted in RV hypertrophy. Estrogen treatment attenuated the increase in RV afterload compared with the untreated group (effective arterial elastance: 2.3 ± 0.1 mmHg/μl vs. 3.2 ± 0.3 mmHg/μl), and this was linked to preserved pulmonary arterial compliance (compliance: 0.013 ± 0.001 mm2/mmHg vs. 0.010 ± 0.001 mm2/mmHg; P < 0.05) and decreased distal muscularization. Despite lower RV afterload in the estrogen-treated SuHx group, RV contractility increased to a similar level as the placebo-treated SuHx group, suggesting an inotropic effect of estrogen on RV myocardium. Consequently, when compared with the placebo-treated SuHx group, estrogen improved RV ejection fraction and cardiac output (ejection fraction: 57 ± 2% vs. 44 ± 2% and cardiac output: 9.7 ± 0.4 ml/min vs. 7.6 ± 0.6 ml/min; P < 0.05). Our study demonstrates for the first time that estrogen protects RV function in the SuHx model of PAH in mice directly by stimulating RV contractility and indirectly by protecting against pulmonary vascular remodeling. These results underscore the therapeutic potential of estrogen in PAH.

2020 ◽  
Vol 318 (4) ◽  
pp. H853-H866 ◽  
Author(s):  
Yin Kang ◽  
Guangyan Zhang ◽  
Emma C. Huang ◽  
Jiapeng Huang ◽  
Jun Cai ◽  
...  

Right ventricular (RV) dysfunction is the main determinant of mortality in patients with pulmonary arterial hypertension (PAH) and while inflammation is pathogenic in PAH, there is limited information on the role of RV inflammation in PAH. Sulforaphane (SFN), a potent Nrf2 activator, has significant anti-inflammatory effects and facilitates cardiac protection in preclinical diabetic models. Therefore, we hypothesized that SFN might play a comparable role in reducing RV and pulmonary inflammation and injury in a murine PAH model. We induced PAH using SU5416 and 10% hypoxia (SuHx) for 4 wk in male mice randomized to SFN at a daily dose of 0.5 mg/kg 5 days per week for 4 wk or to vehicle control. Transthoracic echocardiography was performed to characterize chamber-specific ventricular function during PAH induction. At 4 wk, we measured RV pressure and relevant measures of histology and protein and gene expression. SuHx induced progressive RV, but not LV, diastolic and systolic dysfunction, and RV and pulmonary remodeling, fibrosis, and inflammation. SFN prevented SuHx-induced RV dysfunction and remodeling, reduced RV inflammation and fibrosis, upregulated Nrf2 expression and its downstream gene NQO1, and reduced the inflammatory mediator leucine-rich repeat and pyrin domain-containing 3 (NLRP3). SFN also reduced SuHx-induced pulmonary vascular remodeling, inflammation, and fibrosis. SFN alone had no effect on the heart or lungs. Thus, SuHx-induced RV and pulmonary dysfunction, inflammation, and fibrosis can be attenuated or prevented by SFN, supporting the rationale for further studies to investigate SFN and the role of Nrf2 and NLRP3 pathways in preclinical and clinical PAH studies. NEW & NOTEWORTHY Pulmonary arterial hypertension (PAH) in this murine model (SU5416 + hypoxia) is associated with early changes in right ventricular (RV) diastolic and systolic function. RV and lung injury in the SU5416 + hypoxia model are associated with markers for fibrosis, inflammation, and oxidative stress. Sulforaphane (SFN) alone for 4 wk has no effect on the murine heart or lungs. Sulforaphane (SFN) attenuates or prevents the RV and lung injury in the SUF5416 + hypoxia model of PAH, suggesting that Nrf2 may be a candidate target for strategies to prevent or reverse PAH.


2018 ◽  
Vol 8 (2) ◽  
pp. 204589401876535 ◽  
Author(s):  
Toshitaka Nakaya ◽  
Ichizo Tsujino ◽  
Hiroshi Ohira ◽  
Takahiro Sato ◽  
Taku Watanabe ◽  
...  

Right ventricular (RV) function is an important determinant of the prognosis in patients with pulmonary arterial hypertension (PAH). In the context of recent therapeutic progress, there is an increasing need for better monitoring of RV function for management of PAH. We present the case of a 42-year-old woman with idiopathic PAH who was treated with three oral pulmonary vasodilators, i.e. tadalafil, ambrisentan, and beraprost. At the baseline assessment, the mean pulmonary arterial pressure (mPAP) was 45 mmHg, cardiac index (CI) was 1.36 L/min/m2, and pulmonary vascular resistance (PVR) was elevated to 21.3 Wood units (WU). However, three months after the start of combination treatment, mPAP and PVR decreased to 42 mmHg and 7.5 WU, respectively, and conventional indices of RV function, such as CI, right atrial area, and right atrial pressure also improved. Beyond three months, however, there were no further improvements in mPAP, PVR, or indices of RV function. In addition, we calculated three recently introduced indices of intrinsic RV function: end-systolic elastance (Ees; an index of RV contractility), Ees/arterial elastance ratio (Ees/Ea; an index of RV/pulmonary arterial coupling), and β (an index of RV stiffness) using cardiac magnetic resonance imaging and Swan-Ganz catheterization measurements. Notably, in contrast to conventional parameters, Ees, Ees/Ea, and β showed persistent improvement during the entire two-year follow-up. The application of Ees, Ees/Ea, and β may play an additional role in a comprehensive assessment of RV function in PAH.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1781
Author(s):  
Bastien Masson ◽  
David Montani ◽  
Marc Humbert ◽  
Véronique Capuano ◽  
Fabrice Antigny

Pulmonary arterial hypertension (PAH) is a severe and multifactorial disease. PAH pathogenesis mostly involves pulmonary arterial endothelial and pulmonary arterial smooth muscle cell (PASMC) dysfunction, leading to alterations in pulmonary arterial tone and distal pulmonary vessel obstruction and remodeling. Unfortunately, current PAH therapies are not curative, and therapeutic approaches mostly target endothelial dysfunction, while PASMC dysfunction is under investigation. In PAH, modifications in intracellular Ca2+ homoeostasis could partly explain PASMC dysfunction. One of the most crucial actors regulating Ca2+ homeostasis is store-operated Ca2+ channels, which mediate store-operated Ca2+ entry (SOCE). This review focuses on the main actors of SOCE in human and experimental PASMC, their contribution to PAH pathogenesis, and their therapeutic potential in PAH.


Sign in / Sign up

Export Citation Format

Share Document