Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats

2004 ◽  
Vol 286 (5) ◽  
pp. H1665-H1671 ◽  
Author(s):  
Junhui Tan ◽  
Hao Wang ◽  
Frans H. H. Leenen

In the brain, ouabain-like compounds (OLC) and the reninangiotensin system (RAS) contribute to sympathetic hyperactivity in rats after myocardial infarction (MI). This study aimed to evaluate changes in components of the central vs. the peripheral RAS. Angiotensin-converting enzyme (ACE) and angiotensin type 1 (AT1) receptor binding densities were determined by measuring 125I-labeled 351A and 125I-labeled ANG II binding 4 and 8 wk after MI. In the brain, ACE and AT1 receptor binding increased 8–15% in the subfornical organ, 14–22% in the organum vasculosum laminae terminalis, 20–34% in the paraventricular nucleus, and 13–15% in the median preoptic nucleus. In the heart, the greatest increase in ACE and AT1 receptor binding occurred at the infarct scar (∼10-fold) and the least in the right ventricle (2-fold). In kidneys, ACE and AT1 receptor binding decreased 10–15%. After intracerebroventricular infusion of Fab fragments to block brain OLC from 0.5 to 4 wk after MI, increases in ACE and AT1 receptors in the subfornical organ, organum vasculosum laminae terminalis, paraventricular nucleus, and medial preoptic nucleus were markedly inhibited, and ACE and AT1 receptor densities in the heart increased less (6-fold in the infarct scar). In kidneys, decreases in ACE and AT1 receptor binding were absent after treatment with Fab fragments. These results demonstrate that ACE and AT1 receptor binding densities increase not only in the heart but also in relevant areas of the brain of rats after MI. Brain OLC appears to play a major role in activation of brain RAS in rats after MI and, to a modest degree, in activation of the cardiac RAS.

2006 ◽  
Vol 291 (3) ◽  
pp. H1109-H1117 ◽  
Author(s):  
Bing S. Huang ◽  
Warren J. Cheung ◽  
Hao Wang ◽  
Junhui Tan ◽  
Roselyn A. White ◽  
...  

Functional studies indicate that the sympathoexcitatory and pressor responses to an increase in cerebrospinal fluid (CSF) [Na+] by central infusion of Na+-rich artificial cerebrospinal fluid (aCSF) in Wistar rats are mediated in the brain by mineralocorticoid receptor (MR) activation, ouabain-like compounds (OLC), and AT1-receptor stimulation. In the present study, we examined whether increasing CSF [Na+] by intracerebroventricular infusion of Na+-rich aCSF activates MR and thereby increases OLC and components of the renin-angiotensin system in the brain. Male Wistar rats received via osmotic minipump an intracerebroventricular infusion of aCSF or Na+-rich aCSF, in some groups combined with intracerebroventricular infusion of spironolactone (100 ng/h), antibody Fab fragments (to bind OLC), or as control γ-globulins. After 2 wk of infusion, resting blood pressure and heart rate were recorded, OLC and aldosterone content in the hypothalamus were assessed by a specific ELISA or radioimmunoassay, and angiotensin-converting enzyme (ACE) and AT1-receptor binding densities in various brain nuclei were measured by autoradiography using 125I-labeled 351 A and 125I-labeled ANG II. When compared with intracerebroventricular aCSF, intracerebroventricular Na+-rich aCSF increased CSF [Na+] by ∼5 mmol/l, mean arterial pressure by ∼20 mmHg, heart rate by ∼65 beats/min, and hypothalamic content of OLC by 50% and of aldosterone by 33%. Intracerebroventricular spironolactone did not affect CSF [Na+] but blocked the Na+-rich aCSF-induced increases in blood pressure and heart rate and OLC content. Intracerebroventricular Na+-rich aCSF increased ACE and AT1-receptor-binding densities in several brain nuclei, and Fab fragments blocked these increases. These data indicate that in Wistar rats, a chronic increase in CSF [Na+] may increase hypothalamic aldosterone and activate CNS pathways involving MR, and OLC, leading to increases in AT1-receptor and ACE densities in brain areas involved in cardiovascular regulation and hypertension.


2003 ◽  
Vol 285 (2) ◽  
pp. R420-R428 ◽  
Author(s):  
Andrej A. Romanovsky ◽  
Naotoshi Sugimoto ◽  
Christopher T. Simons ◽  
William S. Hunter

The organum vasculosum laminae terminalis (OVLT) has been proposed to serve as the interface for blood-to-brain febrigenic signaling, because ablation of this structure affects the febrile response. However, lesioning the OVLT causes many “side effects” not fully accounted for in the fever literature. By placing OVLT-lesioned rats on intensive rehydration therapy, we attempted to prevent these side effects and to evaluate the febrile response in their absence. After the OVLT of Sprague-Dawley rats was lesioned electrolytically, the rats were given access to 5% sucrose for 1 wk to stimulate drinking. Sucrose consumption and body mass were monitored. The animals were examined twice a day for signs of dehydration and treated with isotonic saline (50 ml/kg sc) when indicated. This protocol eliminated mortality but not several acute and chronic side effects stemming from the lesion. The acute effects included adipsia and gross (14% of body weight) emaciation; chronic effects included hypernatremia, hyperosmolality, a suppressed drinking response to hypertonic saline, and previously unrecognized marked (by ∼2°C) and long-lasting (>3 wk) hyperthermia. Because the hyperthermia was not accompanied by tail skin vasoconstriction, it likely reflected increased thermogenesis. After the rats recovered from the acute (but not chronic) side effects, their febrile response to IL-1β (500 ng/kg iv) was tested. The sham-operated rats developed typical monophasic fevers (∼0.5°C), the lesioned rats did not. However, the absence of the febrile response in the OVLT-lesioned rats likely resulted from the untreatable side effects. For example, hyperthermia at the time of pyrogen injection was high enough (39–40°C) to solely prevent fever from developing. Hence, the changed febrile responsiveness of OVLT-lesioned animals is given an alternative interpretation, unrelated to febrigenic signaling to the brain.


1991 ◽  
Vol 69 (7) ◽  
pp. 1035-1045 ◽  
Author(s):  
John Ciriello ◽  
Michael B. Gutman

The functional projections from pressor sites in the subfornical organ (SFO) were identified using the 2-deoxyglucose (2-DG) autoradiographic method in urethane-anesthetized, sinoaortic-denervated rats. Autoradiographs of brain and spinal cord sections taken from rats whose SFO was continuously stimulated electrically for 45 min with stereotaxically placed monopolar electrodes (150 μA, 1.5-ms pulse duration, 15 Hz) following injection of tritiated 2-DG were compared with control rats that received intravenous infusions of pressor doses of phenylephrine to mimic the increase in arterial pressure observed during SFO stimulation. Comparisons were also made to autoradiographs from rats in which the ventral fornical commissure (CFV), just dorsal to the SFO, was electrically stimulated. The pressor responses during either electrical stimulation of the SFO or intravenous infusion of phenylephrine were similar in magnitude. On the other hand, stimulation of the CFV did not elicit a significant pressor response. Electrical stimulation of the SFO increased 2-DG uptake, in comparison to the phenylephrine-infused rats, in the nucleus triangularis, septofimbrial nucleus, lateral septal nucleus, nucleus accumbens, bed nucleus of the stria terminalis, dorsal and ventral nucleus medianus (median preoptic nucleus), paraventricular nucleus of the thalamus, hippocampus, supraoptic nucleus, suprachiasmatic nucleus, paraventricular nucleus of the hypothalamus, and the intermediolateral nucleus of and central autonomic area of the thoracic spinal cord. In contrast, in rats whose CFV was stimulated, these nuclei did not demonstrate changes in 2-DG uptake compared with control animals that received pressor doses of phenylephrine. These data have demonstrated some of the components of the neural circuitry likely involved in mediating the pressor responses to stimulation of the SFO and the corrective responses to activation of the SFO by disturbances to circulatory and fluid balance homeostasis.Key words: cardiovascular reflex pathways, drinking, median preoptic nucleus, osmoreceptors, paraventricular nucleus of the hypothalamus, supraoptic nucleus.


2005 ◽  
Vol 288 (4) ◽  
pp. R947-R955 ◽  
Author(s):  
Julia A. Freece ◽  
Julie E. Van Bebber ◽  
Dannielle K. Zierath ◽  
Douglas A. Fitts

The lamina terminalis was severed by a horizontal knife cut through the anterior commissure to determine the effects of a disconnection of the subfornical organ (SFO) on drinking and Fos-like immunoreactivity (Fos-ir) in the rat brain in response to an intragastric load of hypertonic saline (5 ml/kg of 1.5 M NaCl by gavage). After an initial load, knife-cut rats drank significantly less water than sham-cut rats, thus confirming a role for the SFO in osmotic drinking. After a second load at least 1 wk later, the rats were not allowed to drink after the gavage and were perfused for analysis of Fos-ir at 90 min. Compared with sham-cut rats, the knife-cut rats displayed significantly elevated Fos-ir in the main body of the SFO, in the dorsal cap of the organum vasculosum laminae terminalis, and in the ventral median preoptic nucleus after the hypertonic load. The knife cut significantly decreased Fos-ir in the supraoptic nucleus. Fos-ir was expressed mainly in the midcoronal and caudal parts of the area postrema of sham-cut rats, and this expression was greatly reduced in knife-cut rats. These findings strengthen the case for the presence of independently functioning osmoreceptors within the SFO and suggest that the structures of the lamina terminalis provide mutual inhibition during hypernatremia. They also demonstrate that the Fos-ir in the area postrema after intragastric osmotic loading is heavily dependent on the intact connectivity of the SFO.


2012 ◽  
Vol 302 (4) ◽  
pp. R424-R432 ◽  
Author(s):  
Tamra Llewellyn ◽  
Hong Zheng ◽  
Xuefei Liu ◽  
Bo Xu ◽  
Kaushik P. Patel

The paraventricular nucleus (PVN) of the hypothalamus is involved in the neural control of sympathetic drive, but the precise mechanism(s) that influences the PVN is not known. The activation of the PVN may be influenced by input from higher forebrain areas, such as the median preoptic nucleus (MnPO) and the subfornical organ (SFO). We hypothesized that activation of the MnPO or SFO would drive the PVN through a glutamatergic pathway. Neuroanatomical connections were confirmed by the recovery of a retrograde tracer in the MnPO and SFO that was injected bilaterally into the PVN in rats. Microinjection of 200 pmol of N-methyl-d-aspartate (NMDA) or bicuculline-induced activation of the MnPO and increased renal sympathetic activity (RSNA), mean arterial pressure, and heart rate in anesthetized rats. These responses were attenuated by prior microinjection of a glutamate receptor blocker AP5 (4 nmol) into the PVN (NMDA − ΔRSNA 72 ± 8% vs. 5 ± 1%; P < 0.05). Using single-unit extracellular recording, we examined the effect of NMDA microinjection (200 pmol) into the MnPO on the firing activity of PVN neurons. Of the 11 active neurons in the PVN, 6 neurons were excited by 95 ± 17% ( P < 0.05), 1 was inhibited by 57%, and 4 did not respond. The increased RSNA after activation of the SFO by ANG II (1 nmol) or bicuculline (200 pmol) was also reduced by AP5 in the PVN (for ANG II − ΔRSNA 46 ± 7% vs. 17 ± 4%; P < 0.05). Prior microinjection of ANG II type 1 receptor blocker losartan (4 nmol) into the PVN did not change the response to ANG II or bicuculline microinjection into the SFO. The results from this study demonstrate that the sympathoexcitation mediated by a glutamatergic mechanism in the PVN is partially driven by the activation of the MnPO or SFO.


2003 ◽  
Vol 285 (5) ◽  
pp. H1949-H1955 ◽  
Author(s):  
Jun Ming Wang ◽  
Shereeni J. Veerasingham ◽  
Junhui Tan ◽  
Frans H. H. Leenen

To assess effects of dietary salt on brain AT1 receptor densities, 4-wk-old Dahl salt-sensitive (Dahl S) and salt-resistant (Dahl R) rats were fed a regular (101 μmol Na/g) or high (1,370 μmol Na/g)-salt diet for 1, 2, or 4 wk. AT1 receptors were assessed by quantitative in vitro autoradiography. AT1 receptor densities did not differ significantly between strains on the regular salt diet. The high-salt diet for 1 or 2 wk increased AT1 receptor binding by 21–64% in the Dahl S rats in the subfornical organ, median preoptic nucleus, paraventricular nucleus, and suprachiasmatic nucleus. No changes were noted in the Dahl R rats. After 4 wk on a high-salt diet, increases in AT1 receptor binding persisted in Dahl S rats but were now also noted in the paraventricular nucleus, median preoptic nucleus, and suprachiasmatic nucleus of Dahl R rats. At 4 wk on the diet, intracerebroventricular captopril caused clear decreases in blood pressure only in the Dahl S on the high-salt diet but caused largely similar relative increases in brain AT1 receptor densities in Dahl S and R on the high-salt diet versus regular salt diet. These data demonstrate that high salt intake rapidly (within 1 wk) increases AT1 receptor densities in specific brain nuclei in Dahl S and later (by 4 wk) also in Dahl R rats. Because the brain renin-angiotensin system only contributes to salt-induced hypertension in Dahl S rats, further studies are needed to determine which of the salt-induced increases in brain AT1 receptor densities contribute to the hypertension and which to other aspects of body homeostasis.


Sign in / Sign up

Export Citation Format

Share Document