Effects of prostaglandin E2 on cells cultured from the rat organum vasculosum laminae terminalis and median preoptic nucleus

Neuroscience ◽  
2016 ◽  
Vol 313 ◽  
pp. 23-35 ◽  
Author(s):  
B. Simm ◽  
D. Ott ◽  
E. Pollatzek ◽  
J. Murgott ◽  
R. Gerstberger ◽  
...  
2004 ◽  
Vol 286 (5) ◽  
pp. H1665-H1671 ◽  
Author(s):  
Junhui Tan ◽  
Hao Wang ◽  
Frans H. H. Leenen

In the brain, ouabain-like compounds (OLC) and the reninangiotensin system (RAS) contribute to sympathetic hyperactivity in rats after myocardial infarction (MI). This study aimed to evaluate changes in components of the central vs. the peripheral RAS. Angiotensin-converting enzyme (ACE) and angiotensin type 1 (AT1) receptor binding densities were determined by measuring 125I-labeled 351A and 125I-labeled ANG II binding 4 and 8 wk after MI. In the brain, ACE and AT1 receptor binding increased 8–15% in the subfornical organ, 14–22% in the organum vasculosum laminae terminalis, 20–34% in the paraventricular nucleus, and 13–15% in the median preoptic nucleus. In the heart, the greatest increase in ACE and AT1 receptor binding occurred at the infarct scar (∼10-fold) and the least in the right ventricle (2-fold). In kidneys, ACE and AT1 receptor binding decreased 10–15%. After intracerebroventricular infusion of Fab fragments to block brain OLC from 0.5 to 4 wk after MI, increases in ACE and AT1 receptors in the subfornical organ, organum vasculosum laminae terminalis, paraventricular nucleus, and medial preoptic nucleus were markedly inhibited, and ACE and AT1 receptor densities in the heart increased less (6-fold in the infarct scar). In kidneys, decreases in ACE and AT1 receptor binding were absent after treatment with Fab fragments. These results demonstrate that ACE and AT1 receptor binding densities increase not only in the heart but also in relevant areas of the brain of rats after MI. Brain OLC appears to play a major role in activation of brain RAS in rats after MI and, to a modest degree, in activation of the cardiac RAS.


2005 ◽  
Vol 288 (4) ◽  
pp. R947-R955 ◽  
Author(s):  
Julia A. Freece ◽  
Julie E. Van Bebber ◽  
Dannielle K. Zierath ◽  
Douglas A. Fitts

The lamina terminalis was severed by a horizontal knife cut through the anterior commissure to determine the effects of a disconnection of the subfornical organ (SFO) on drinking and Fos-like immunoreactivity (Fos-ir) in the rat brain in response to an intragastric load of hypertonic saline (5 ml/kg of 1.5 M NaCl by gavage). After an initial load, knife-cut rats drank significantly less water than sham-cut rats, thus confirming a role for the SFO in osmotic drinking. After a second load at least 1 wk later, the rats were not allowed to drink after the gavage and were perfused for analysis of Fos-ir at 90 min. Compared with sham-cut rats, the knife-cut rats displayed significantly elevated Fos-ir in the main body of the SFO, in the dorsal cap of the organum vasculosum laminae terminalis, and in the ventral median preoptic nucleus after the hypertonic load. The knife cut significantly decreased Fos-ir in the supraoptic nucleus. Fos-ir was expressed mainly in the midcoronal and caudal parts of the area postrema of sham-cut rats, and this expression was greatly reduced in knife-cut rats. These findings strengthen the case for the presence of independently functioning osmoreceptors within the SFO and suggest that the structures of the lamina terminalis provide mutual inhibition during hypernatremia. They also demonstrate that the Fos-ir in the area postrema after intragastric osmotic loading is heavily dependent on the intact connectivity of the SFO.


1994 ◽  
Vol 267 (3) ◽  
pp. R792-R798 ◽  
Author(s):  
N. E. Rowland ◽  
B. H. Li ◽  
A. K. Rozelle ◽  
G. C. Smith

Rats were given intracerebroventricular injections of either angiotensin II (ANG II) or the cholinomimetic carbachol. Some rats received cotreatment with ANG II antagonists selective for either angiotensin receptor AT1 (losartan) or AT2 (PD-123319, CGP-42112A). One hour later, the rats were killed and the brains processed for immunocytochemical detection of Fos-like immunoreactivity (FLI). ANG II treatment induced strong FLI in the anterior subfornical organ (SFO), median preoptic nucleus (MnPO), organum vasculosum laminae terminalis (OVLT), and supraoptic and paraventricular hypothalamic nuclei (SON, PVH). The AT1 antagonist abolished FLI in all regions normally stimulated by ANG II. The AT2 antagonist PD-123319 reduced FLI in SON and PVH, but CGP-42112A was less effective. Carbachol induced strong FLI in SON, PVH, and MnPO and only moderate FLI in SFO and OVLT. The AT1 antagonist prevented carbachol-induced FLI in the MnPO only. The distributions of FLI are compared between these central dipsogens and with that previously reported after peripheral infusion of ANG II, and their implications for mapping central thirst pathways are discussed.


2007 ◽  
Vol 292 (5) ◽  
pp. R1907-R1915 ◽  
Author(s):  
Miloslav Kolaj ◽  
Leo P. Renaud

The median preoptic nucleus (MnPO) in the lamina terminalis receives a prominent catecholaminergic innervation from the dorsomedial and ventrolateral medulla. The present investigation used whole cell patch-clamp recordings in rat brain slice preparations to evaluate the hypothesis that presynaptic adrenoceptors could modulate GABAergic inputs to MnPO neurons. Bath applications of norepinephrine (NE; 20–50 μM) induced a prolonged and reversible suppression of inhibitory postsynaptic currents (IPSCs) and reduced paired-pulse depression evoked by stimulation in the subfornical organ and organum vasculosum lamina terminalis. These events were not correlated with any observed changes in membrane conductance arising from NE activity at postsynaptic α1- or α2-adrenoceptors. Consistent with a role for presynaptic α2-adrenoceptors, responses were selectively mimicked by an α2-adrenoceptor agonist (UK-14304) and blockable with an α2-adrenoceptor antagonist (idazoxan). Although the α1-adrenoceptor agonist cirazoline and the α1-adrenoceptor antagonist prazosin were without effect on these evoked IPSCs, NE was noted to increase (via α1-adrenoceptors) or decrease (via α2-adrenoceptors) the frequency of spontaneous and tetrodotoxin-resistant miniature IPSCs. Collectively, these observations imply that both presynaptic and postsynaptic α1- and α2-adrenoceptors in MnPO are capable of selective modulation of rapid GABAA receptor-mediated inhibitory synaptic transmission along the lamina terminalis and therefore likely to exert a prominent influence in regulating cell excitability within the MnPO.


2013 ◽  
Vol 30 (10) ◽  
pp. 1272-1282 ◽  
Author(s):  
María Luisa Moreno ◽  
Enrique Meza ◽  
Elvira Morgado ◽  
Claudia Juárez ◽  
Angel Ramos-Ligonio ◽  
...  

2011 ◽  
Vol 105 (2) ◽  
pp. 650-660 ◽  
Author(s):  
Christina Tremblay ◽  
Emmanuelle Berret ◽  
Mélaine Henry ◽  
Benjamin Nehmé ◽  
Louis Nadeau ◽  
...  

Sodium (Na+) ions are of primary importance for hydromineral and cardiovascular homeostasis, and the level of Na+ in the body fluid compartments [plasma and cerebrospinal fluid (CSF)] is precisely monitored in the hypothalamus. Glial cells seem to play a critical role in the mechanism of Na+ detection. However, the precise role of neurons in the detection of extracellular Na+ concentration ([Na+]out) remains unclear. Here we demonstrate that neurons of the median preoptic nucleus (MnPO), a structure in close contact with the CSF, are specific Na+ sensors. Electrophysiological recordings were performed on dissociated rat MnPO neurons under isotonic [Na+] (100 mM NaCl) with local application of hypernatriuric (150, 180 mM NaCl) or hyponatriuric (50 mM NaCl) external solution. The hyper- and hyponatriuric conditions triggered an in- and an outward current, respectively. The reversal potential of the current matched the equilibrium potential of Na+, indicating that a change in [Na+]out modified the influx of Na+ in the MnPO neurons. The conductance of the Na+ current was not affected by either the membrane potential or the [Na+]out. Moreover, the channel was highly selective for lithium over guanidinium. Together, these data identified the channel as a Na+ leak channel. A high correlation between the electrophysiological recordings and immunofluorescent labeling for the NaX channel in dissociated MnPO neurons strongly supports this channel as a candidate for the Na+ leak channel responsible for the Na+-sensing ability of rat MnPO neurons. The absence of NaX labeling and of a specific current evoked by a change in [Na+]out in mouse MnPO neurons suggests species specificity in the hypothalamus structures participating in central Na+ detection.


2001 ◽  
Vol 280 (6) ◽  
pp. R1837-R1843 ◽  
Author(s):  
Zhice Xu ◽  
Calvario Glenda ◽  
Linda Day ◽  
Jiaming Yao ◽  
Michael G. Ross

The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 ± 2 days) received injection of ANG II (1.5 μg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and fetal brains were perfused for subsequent Fos staining. Intracerebroventricular ANG II significantly increased fetal swallowing in near-term ovine fetuses (1.1 ± 0.2 to 4.5 ± 1.0 swallows/min). The initiation of stimulated fetal swallowing activity was similar to the latency of thirst responses (drinking behavior) elicited by central ANG II in adult animals. ANG II evoked increased Fos staining in putative dipsogenic centers, including the subfornical organ, organum vasculosum of the lamina terminalis, and median preoptic nucleus. Intracerebroventricular injection of ANG II also caused c- fos expression in the fetal hindbrain. These results indicate that an ANG II-mediated central dipsogenic mechanism is intact before birth, acting at sites consistent with the dipsogenic neural network. Central ANG II mechanisms likely contribute to fetal body fluid and amniotic fluid regulation.


2003 ◽  
Vol 285 (2) ◽  
pp. R420-R428 ◽  
Author(s):  
Andrej A. Romanovsky ◽  
Naotoshi Sugimoto ◽  
Christopher T. Simons ◽  
William S. Hunter

The organum vasculosum laminae terminalis (OVLT) has been proposed to serve as the interface for blood-to-brain febrigenic signaling, because ablation of this structure affects the febrile response. However, lesioning the OVLT causes many “side effects” not fully accounted for in the fever literature. By placing OVLT-lesioned rats on intensive rehydration therapy, we attempted to prevent these side effects and to evaluate the febrile response in their absence. After the OVLT of Sprague-Dawley rats was lesioned electrolytically, the rats were given access to 5% sucrose for 1 wk to stimulate drinking. Sucrose consumption and body mass were monitored. The animals were examined twice a day for signs of dehydration and treated with isotonic saline (50 ml/kg sc) when indicated. This protocol eliminated mortality but not several acute and chronic side effects stemming from the lesion. The acute effects included adipsia and gross (14% of body weight) emaciation; chronic effects included hypernatremia, hyperosmolality, a suppressed drinking response to hypertonic saline, and previously unrecognized marked (by ∼2°C) and long-lasting (>3 wk) hyperthermia. Because the hyperthermia was not accompanied by tail skin vasoconstriction, it likely reflected increased thermogenesis. After the rats recovered from the acute (but not chronic) side effects, their febrile response to IL-1β (500 ng/kg iv) was tested. The sham-operated rats developed typical monophasic fevers (∼0.5°C), the lesioned rats did not. However, the absence of the febrile response in the OVLT-lesioned rats likely resulted from the untreatable side effects. For example, hyperthermia at the time of pyrogen injection was high enough (39–40°C) to solely prevent fever from developing. Hence, the changed febrile responsiveness of OVLT-lesioned animals is given an alternative interpretation, unrelated to febrigenic signaling to the brain.


Sign in / Sign up

Export Citation Format

Share Document