Isoflurane-induced preconditioning is attenuated by diabetes

2002 ◽  
Vol 282 (6) ◽  
pp. H2018-H2023 ◽  
Author(s):  
Katsuya Tanaka ◽  
Franz Kehl ◽  
Weidong Gu ◽  
John G. Krolikowski ◽  
Paul S. Pagel ◽  
...  

Volatile anesthetics stimulate, but hyperglycemia attenuates, the activity of mitochondrial ATP-regulated K+ channels. We tested the hypothesis that diabetes mellitus interferes with isoflurane-induced preconditioning. Acutely instrumented, barbiturate-anesthetized dogs were randomly assigned to receive 0, 0.32, or 0.64% end-tidal concentrations of isoflurane in the absence or presence of diabetes (3 wk after administration of alloxan and streptozotocin) in six experimental groups. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium staining) was 29 ± 3% ( n = 8) of the left ventricular area at risk in control experiments. Isoflurane reduced infarct size (15 ± 2 and 13 ± 1% during 0.32 and 0.64% concentrations; n = 8 and 7 dogs, respectively). Diabetes alone did not alter infarct size (30 ± 3%; n = 8) but blocked the protective effects of 0.32% (27 ± 2%; n = 7) and not 0.64% isoflurane (18 ± 3%; n = 7). Infarct size was directly related to blood glucose concentrations in diabetic dogs, but this relationship was abolished by higher concentrations of isoflurane. The results indicate that blood glucose and end-tidal isoflurane concentrations are important determinants of infarct size during anesthetic-induced preconditioning.

2001 ◽  
Vol 280 (4) ◽  
pp. H1744-H1750 ◽  
Author(s):  
Judy R. Kersten ◽  
Matthew W. Montgomery ◽  
Tannaz Ghassemi ◽  
Eric R. Gross ◽  
Wolfgang G. Toller ◽  
...  

Hyperglycemia is an important predictor of cardiovascular mortality in patients with diabetes. We investigated the hypothesis that diabetes or acute hyperglycemia attenuates the reduction of myocardial infarct size produced by activation of mitochondrial ATP-regulated potassium (KATP) channels. Acutely instrumented barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium chloride staining) was 25 ± 1, 28 ± 3, and 25 ± 1% of the area at risk (AAR) for infarction in control, diabetic (3 wk after streptozotocin-alloxan), and hyperglycemic (15% intravenous dextrose) dogs, respectively. Diazoxide (2.5 mg/kg iv) significantly decreased infarct size (10 ± 1% of AAR, P < 0.05) but did not produce protection in the presence of diabetes (28 ± 5%) or moderate hyperglycemia (blood glucose 310 ± 10 mg/dl; 23 ± 2%). The dose of diazoxide and the degree of hyperglycemia were interactive. Profound (blood glucose 574 ± 23 mg/dl) but not moderate hyperglycemia blocked the effects of high-dose (5.0 mg/kg) diazoxide [26 ± 3, 15 ± 3 ( P < 0.05), and 11 ± 2% ( P < 0.05), respectively]. There were no differences in systemic hemodynamics, AAR, or coronary collateral blood flow (by radioactive microspheres) between groups. The results indicate that diabetes or hyperglycemia impairs activation of mitochondrial KATP channels.


2002 ◽  
Vol 96 (1) ◽  
pp. 183-188 ◽  
Author(s):  
Franz Kehl ◽  
John G. Krolikowski ◽  
Boris Mraovic ◽  
Paul S. Pagel ◽  
David C. Warltier ◽  
...  

Background Volatile anesthetics stimulate but hyperglycemia attenuates activity of mitochondrial adenosine triphosphate-regulated potassium channels. The authors tested the hypothesis that acute hyperglycemia interferes with isoflurane-induced preconditioning in vivo. Methods Barbiturate-anesthetized dogs (n = 79) were instrumented for measurement of hemodynamics. Myocardial infarct size and collateral blood flow were assessed with triphenyltetrazolium chloride staining and radioactive microspheres, respectively. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Dogs were randomly assigned to receive an infusion of normal saline (normoglycemic controls) or 15% dextrose in water to increase blood glucose concentrations to 300 or 600 mg/dl in the absence or presence of isoflurane (0.5 or 1.0 minimum alveolar concentration [MAC]) in separate experimental groups. Isoflurane was discontinued, and blood glucose concentrations were allowed to return to baseline values before left anterior descending coronary artery occlusion. Results Myocardial infarct size was 26 +/- 1% of the left ventricular area at risk in control experiments. Isoflurane reduced infarct size (15 +/- 2 and 13 +/- 1% during 0.5 and 1.0 MAC, respectively). Hyperglycemia alone did not alter infarct size (26 +/- 2 and 33 +/- 4% during 300 and 600 mg/dl, respectively). Moderate hyperglycemia blocked the protective effects of 0.5 MAC (25 +/- 2%) but not 1.0 MAC isoflurane (13 +/- 2%). In contrast, severe hyperglycemia prevented reductions of infarct size during both 0.5 MAC (29 +/- 3%) and 1.0 MAC isoflurane (28 +/- 4%). Conclusions Acute hyperglycemia attenuates reductions in myocardial infarct size produced by isoflurane in dogs.


2010 ◽  
Vol 298 (6) ◽  
pp. H2201-H2207 ◽  
Author(s):  
Garrett J. Gross ◽  
John E. Baker ◽  
Anna Hsu ◽  
Hsiang-en Wu ◽  
John R. Falck ◽  
...  

We previously demonstrated that several epoxyeicosatrienoic acids (EETs) produce reductions in myocardial infarct size in rats and dogs. Since a recent study demonstrated the release of opioids in mediating the antinociceptive effect of 14,15-EET, we hypothesized that endogenous opioids may also be involved in mediating the cardioprotective effect of the EETs. To test this hypothesis, we used an in vivo rat model of infarction and a rat Langendorff model. In the infarct model, hearts were subjected to 30 min occlusion of the left coronary artery and 2 h reperfusion. Animals were treated with 11,12-EET or 14,15-EET (2.5 mg/kg) alone 15 min before occlusion or with opioid antagonists [naloxone, naltrindole, nor-binaltorphimine (nor-BNI), and d-Phe-Cys-Tyr-d-Trp-Om-Thr-Pen-Thr-NH2 (CTOP), a nonselective, a selective δ, a selective κ, and a selective μ receptor antagonist, respectively] 10 min before EET administration. In four separate groups, antiserum to Met- and Leu-enkephalin and dynorphin-A-(1–17) was administered 50 min before the 11,12-EET administration. Infarct size expressed as a percent of the area at risk (IS/AAR) was 63.5 ± 1.2, 45.3 ± 1.0, and 40.9 ± 1.2% for control, 11,12-EET, and 14,15-EET, respectively. The protective effects of 11,12-EET were abolished by pretreatment with either naloxone (60.5 ± 1.8%), naltrindole (60.8 ± 1.0%), nor-BNI (62.3 ± 2.8%), or Met-enkephalin antiserum (63.2 ± 1.7%) but not CTOP (42.0 ± 3.0%). In isolated heart experiments, 11,12-EET was administered to the perfusate 15 min before 20 min global ischemia followed by 45 min reperfusion in control hearts or in those pretreated with pertussis toxin (48 h). 11,12-EET increased the recovery of left ventricular developed pressure from 33 ± 1 to 45 ± 6% ( P < 0.05) and reduced IS/AAR from 37 ± 4 to 20 ± 3% ( P < 0.05). Both pertussis toxin and naloxone abolished these beneficial effects of 11,12-EET. Taken together, these results suggest that the major cardioprotective effects of the EETs depend on activation of a Gi/o protein-coupled δ- and/or κ-opioid receptor.


1998 ◽  
Vol 274 (4) ◽  
pp. H1106-H1112 ◽  
Author(s):  
Ichiro Kouchi ◽  
Tomoyuki Murakami ◽  
Ryuzo Nawada ◽  
Masaharu Akao ◽  
Shigetake Sasayama

Calcium preconditioning (CPC), like ischemic preconditioning (IPC), reduces myocardial infarct size in dogs and rats. ATP-sensitive potassium (KATP) channels induce cardioprotection of IPC in these animals. To determine whether KATP channels mediate both IPC and CPC, pentobarbital sodium-anesthetized rabbits received 30 min of coronary artery occlusion followed by 180 min of reperfusion. IPC was elicited by 5 min of occlusion and 10 min of reperfusion, and CPC was elicited by two cycles of 5 min of calcium infusion with an interval period of 15 min. Infarct size expressed as a percentage of the area at risk was 38 ± 3% (mean ± SE) in controls. IPC, CPC, and pretreatment with a KATP channel opener, cromakalim, all reduced infarct size to 13 ± 2, 17 ± 2, and 12 ± 3%, respectively ( P < 0.01 vs. controls). Glibenclamide, a KATP channel blocker administered 45 min (but not 20 min) before sustained ischemia, attenuated the effects of IPC and CPC (31 ± 4 and 41 ± 6%, respectively). Thus KATP channel activation appears to contribute to these two types of cardioprotection in rabbits.


2000 ◽  
Vol 279 (5) ◽  
pp. H2574-H2579 ◽  
Author(s):  
Paul S. Pagel ◽  
Wolfgang G. Toller ◽  
Eric R. Gross ◽  
Meir Gare ◽  
Judy R. Kersten ◽  
...  

Chronic ingestion of low doses of ethanol protects the myocardium from ischemic injury by activating adenosine receptors and protein kinase C. We tested the hypothesis that ATP-dependent potassium (KATP) channels mediate these beneficial effects. Dogs were fed with ethanol (1.5 g/kg) or water mixed with dry food twice per day for 12 wk. After they were acutely instrumented for measurement of hemodynamics, dogs received saline (vehicle) or glyburide (0.1 mg/kg iv) and were subjected to 60 min of coronary artery occlusion followed by 3 h of reperfusion. Infarct size (through triphenyltetrazolium chloride staining) was significantly ( P < 0.05) reduced to 14 ± 1% of the left ventricular area at risk in ethanol-pretreated dogs compared with controls (25 ± 2%). Glyburide alone did not affect infarct size (25 ± 3%) but abolished the protective effects of ethanol pretreatment (28 ± 3%). No differences in hemodynamics or coronary collateral blood flow (through radioactive microspheres) were observed among groups. The results indicate that KATPchannels mediate the protective effects of chronic consumption of ethanol.


2004 ◽  
Vol 100 (3) ◽  
pp. 547-554 ◽  
Author(s):  
Dunbar Alcindor ◽  
John G. Krolikowski ◽  
Paul S. Pagel ◽  
David C. Warltier ◽  
Judy R. Kersten

Background Cyclooxygenase-2 (COX-2) mediates the late phase of ischemic preconditioning (IPC), but whether this enzyme modulates early IPC, anesthetic-induced preconditioning (APC), or other forms of pharmacologic preconditioning (PPC) is unknown. The authors tested the hypothesis that COX-2 is an essential mediator of IPC, APC, and PPC in vivo. Methods Barbiturate-anesthetized dogs (n = 91) were instrumented for measurement of hemodynamics and randomly assigned to receive IPC (four 5-min coronary occlusions interspersed with 5-min reperfusions), APC (1.0 minimum alveolar concentration of isoflurane for 30 min), or PPC (selective mitochondrial K(ATP) channel opener diazoxide, 2.5 mg/kg intravenous) in the presence or absence of pretreatment with oral aspirin (650 mg), the selective COX-2 inhibitor celecoxib (200 mg), or acetaminophen (500 mg) administered 24, 12, and 2 h before experimentation in 12 separate experimental groups. All dogs were subjected to a 60-min coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size and coronary collateral blood flow were quantified with triphenyltetrazolium staining and radioactive microspheres, respectively. Myocardial 6-keto-prostaglandin F1alpha, a stable metabolite of prostacyclin, was measured (enzyme immunoassay) in separate experiments (n = 8) before and after isoflurane administration, in the presence or absence of celecoxib. Results No significant differences in baseline hemodynamics or the left ventricular area at risk for infarction were observed between groups. IPC, isoflurane, and diazoxide all decreased myocardial infarct size (9 +/- 1, 12 +/- 2, and 11 +/- 1%, respectively) as compared with control (30 +/- 1%). Celecoxib alone had no effect on infarct size (26 +/- 3%) but abolished IPC (30 +/-3%), APC (30 +/- 3%), and PPC (26 +/- 1%). Aspirin (24 +/- 3%) and acetaminophen alone (29 +/- 2%) did not alter infarct size or abolish APC-induced protection (18 +/- 1 and 19 +/- 1%, respectively). Isoflurane increased myocardial 6-keto-prostaglandin F1alpha to 463 +/- 267% of baseline in the absence but not in the presence (94 +/- 13%) of celecoxib. Conclusions The results indicate that COX-2 is a critical mediator of IPC, APC, and PPC in dogs. The role of cyclooxygenase enzymes as obligatory mediators of myocardial protection produced by diverse preconditioning stimuli may have implications for the clinical use of COX-2 inhibitors.


2000 ◽  
Vol 278 (4) ◽  
pp. H1218-H1224 ◽  
Author(s):  
Judy R. Kersten ◽  
Wolfgang G. Toller ◽  
Eric R. Gross ◽  
Paul S. Pagel ◽  
David C. Warltier

Recent evidence indicates that hyperglycemia is an important risk factor for the development of cardiovascular disease. We tested the hypothesis that myocardial infarct size is related to blood glucose concentration in the presence or absence of ischemic preconditioning (PC) stimuli in canine models of diabetes mellitus and acute hyperglycemia. Barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3-h reperfusion. Infarct size was 24 ± 2% of the area at risk (AAR) for infarction in control dogs. PC significantly ( P < 0.05) decreased the extent of infarction in normal (8 ± 2% of AAR), but not diabetic (22 ± 4% of AAR), dogs. Infarct size was linearly related to blood glucose concentration during acute hyperglycemia ( r = 0.96; P < 0.001) and during diabetes ( r= 0.74; P < 0.002) in the presence or absence of PC stimuli. Increases in serum osmolality caused by administration of raffinose (300 g) did not increase infarct size (11 ± 3% of AAR) or interfere with the ability of PC to protect against infarction (2 ± 1% of AAR). The results indicate that hyperglycemia is a major determinant of the extent of myocardial infarction in the dog.


1999 ◽  
Vol 91 (5) ◽  
pp. 1437-1437 ◽  
Author(s):  
Wolfgang G. Toller ◽  
Judy R. Kersten ◽  
Paul S. Pagel ◽  
Douglas A. Hettrick ◽  
David C. Warltier

Background Recent evidence indicates that volatile anesthetics exert protective effects during myocardial ischemia and reperfusion. The authors tested the hypothesis that sevoflurane decreases myocardial infarct size by activating adenosine triphosphate-sensitive potassium (K(ATP)) channels and reduces the time threshold of ischemic preconditioning necessary to protect against infarction. Methods Barbiturate-anesthetized dogs (n = 75) were instrumented for measurement of aortic and left ventricular pressures and maximum rate of increase of left ventricular pressure and were subjected to a 60-min left anterior descending (LAD) coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle or the K(ATP) channel antagonist glyburide (0.1 mg/kg intravenously), and 1 minimum alveolar concentration sevoflurane (administered until immediately before coronary artery occlusion) in the presence or absence of glyburide. In three additional experimental groups, sevoflurane was discontinued 30 min (memory) before the 60-min LAD occlusion or a 2-min LAD occlusion as an ischemic preconditioning stimulus was used with or without subsequent sevoflurane (with memory) pretreatment. Regional myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively. Results Vehicle (23 +/- 1% of the area at risk; mean +/- SEM) and glyburide (23 +/- 2%) alone produced equivalent effects on myocardial infarct size. Sevoflurane significantly (P &lt; 0.05) decreased infarct size (13 +/- 2%). This beneficial effect was abolished by glyburide (21 +/- 3%). Neither the 2-min LAD occlusion nor sevoflurane followed by 30 min of memory were protective alone, but together, sevoflurane enhanced the effects of the brief ischemic stimulus and profoundly reduced infarct size (9 +/- 2%). Conclusion Sevoflurane reduces myocardial infarct size by activating K(ATP) channels and reduces the time threshold for ischemic preconditioning independent of hemodynamic effects in vivo.


2006 ◽  
Vol 105 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Markus Lange ◽  
Thorsten M. Smul ◽  
Christoph A. Blomeyer ◽  
Andreas Redel ◽  
Karl-Norbert Klotz ◽  
...  

Background Anesthetic and ischemic preconditioning share similar signal transduction pathways. The authors tested the hypothesis that the beta1-adrenergic signal transduction pathway mediates anesthetic and ischemic preconditioning in vivo. Methods Pentobarbital-anesthetized (30 mg/kg) rabbits (n = 96) were instrumented for measurement of systemic hemodynamics and subjected to 30 min of coronary artery occlusion and 3 h of reperfusion. Sixty minutes before occlusion, vehicle (control), 1.0 minimum alveolar concentration desflurane, or sevoflurane, and esmolol (30.0 mg x kg(-1) x h(-1)) were administered for 30 min, respectively. Administration of a single 5-min cycle of ischemic preconditioning was instituted 35 min before coronary artery occlusion. In separate groups, the selective blocker esmolol or the protein kinase A inhibitor H-89 (250 microg/kg) was given alone and in combination with desflurane, sevoflurane, and ischemic preconditioning. Results Baseline hemodynamics and area at risk were not significantly different between groups. Myocardial infarct size (triphenyltetrazolium staining) as a percentage of area at risk was 61 +/- 4% in control. Desflurane, sevoflurane, and ischemic preconditioning reduced infarct size to 34 +/- 2, 36 +/- 5, and 23 +/- 3%, respectively. Esmolol did not alter myocardial infarct size (65 +/- 5%) but abolished the protective effects of desflurane and sevoflurane (57 +/- 4 and 52 +/- 4%, respectively) and attenuated ischemic preconditioning (40 +/- 4%). H-89 did not alter infarct size (60 +/- 4%) but abolished preconditioning by desflurane (57 +/- 5%) and sevoflurane (61 +/- 1%). Ischemic preconditioning (24 +/- 7%) was not affected by H-89. Conclusions The results demonstrate that anesthetic preconditioning is mediated by the beta1-adrenergic pathway, whereas this pathway is not essential for ischemic preconditioning. These results indicate important differences in the mechanisms of anesthetic and ischemic preconditioning.


1983 ◽  
Vol 61 (7) ◽  
pp. 672-675 ◽  
Author(s):  
William E. Burmeister ◽  
Robert D. Reynolds

This investigation demonstrated a significant difference in infarct size following coronary artery occlusion between purebred beagles and mixed-breed dogs. Myocardial infarctions were produced by a two-stage ligation of the left anterior descending artery (LAD). Myocardial infarct size, expressed as percent of left ventricular mass, was determined at 24 h by nitro blue tetrazolium staining. Infarct size was significantly smaller (12.5 ± 3.4%) and more variable (coefficient of variation 72%) in beagles than in mixed-breed animals (28.0 ± 2.4% infarct size, 23%; coefficient of variation) (p < 0.001). Ectopic activity at 24 h was similar for both beagles and mixed breed, 92 ± 7 and 92 ± 2% of total heart rate, respectively. Thus this study indicates that the breed of dog (i.e., purebred beagles versus mixed-breed animals) can be an important variable in the study of infarct size resulting from coronary artery occlusion.


Sign in / Sign up

Export Citation Format

Share Document