Response of vasopressin and norepinephrine to lower body negative pressure in humans

1982 ◽  
Vol 243 (6) ◽  
pp. H970-H973 ◽  
Author(s):  
S. R. Goldsmith ◽  
G. S. Francis ◽  
A. W. Cowley ◽  
J. N. Cohn

To examine the contributions of cardiopulmonary and sinoaortic baroreceptors to the nonosmotic release of arginine vasopressin (AVP) in normal humans, we subjected nine individuals without evidence of hypertension or heart disease to graded, lower body negative pressure (LBNP). We also studied the effects of this maneuver on sympathetic nervous system activity using plasma norepinephrine (NE) as an index. Heart rate (HR), mean arterial pressure (MAP), pulse pressure (PP), and central venous pressure (CVP) were measured in the control state and during two consecutive levels of increasingly intense LBNP. At each stage blood was sampled for AVP and NE. AVP was analyzed by radioimmunoassay, NE by a radioenzymatic method. During the first level of LBNP, CVP decreased with no change in HR, MAP, or PP. NE increased from 147 +/- 47 to 212 +/- 53 (SD) pg/ml, P less than 0.01, whereas AVP (5.0 +/- 1.0 pg/ml) did not change. With increased suction CVP fell further, HR increased, and PP narrowed, but MAP did not change. NE further increased to 291 +/- 58 pg/ml (P less than 0.01), but AVP still did not change significantly. One subject became markedly hypotensive, and his AVP increased from 2.6 to 81 pg/ml. A fall in CVP that results in sympathetic activation presumably via cardiopulmonary receptors does not therefore increase AVP levels; a further fall in CVP that leads to modest unloading of the sinoaortic baroreceptor and further increased sympathetic activity also fails to stimulate AVP. Hypotension, however, is accompanied by a rapid and profound increase in circulating AVP.

1993 ◽  
Vol 264 (5) ◽  
pp. R1024-R1030 ◽  
Author(s):  
P. Norsk ◽  
P. Ellegaard ◽  
R. Videbaek ◽  
C. Stadeager ◽  
F. Jessen ◽  
...  

The hypothesis was tested that narrowing of arterial pulse pressure (PP) is a determinant of arginine vasopressin (AVP) release in humans. Six normal males completed a two-step lower body negative pressure (LBNP) protocol of -20 and -50 mmHg, respectively, for 10 min each. None of these subjects experienced presyncopal symptoms. Arterial plasma AVP and plasma renin activity (PRA) (at 2-min intervals) only increased subsequent to a decrease in PP (invasive brachial arterial measurements) and stroke volume (ultrasound Doppler technique, n = 4). Simultaneously, mean arterial pressure did not change. A selective decrease in central venous pressure and left atrial diameter (echocardiography, n = 4) at LBNP of -20 mmHg did not affect AVP or PRA, whereas arterial plasma norepinephrine increased (n = 4). During LBNP, significant (P < 0.05) intraindividual linear correlations were observed between log(AVP) and PP in four of the subjects with r values from -0.75 to -0.99 and between log(PRA) and PP in all six subjects with r values from -0.89 to -0.98. In conclusion, these results are in compliance with the hypothesis that narrowing of PP in humans during central hypovolemia is a determinant of AVP and renin release.


1988 ◽  
Vol 255 (1) ◽  
pp. R149-R156 ◽  
Author(s):  
K. Sander-Jensen ◽  
J. Mehlsen ◽  
C. Stadeager ◽  
N. J. Christensen ◽  
J. Fahrenkrug ◽  
...  

Progressive central hypovolemia is characterized by a normotensive, tachycardic stage followed by a reversible, hypotensive stage with slowing of the heart rate (HR). We investigated circulatory changes and arterial hormone concentrations in response to lower-body negative pressure (LBNP) in six volunteers before and after atropine administration. LBNP of 55 mmHg initially resulted in an increase in HR from 55 +/- 4 to 90 +/- 5 beats/min and decreases in mean arterial pressure (MAP) from 94 +/- 4 to 81 +/- 5 mmHg, in central venous pressure from 7 +/- 1 to -3 +/- 1 mmHg, and in cardiac output from 6.1 +/- 0.5 to 3.7 +/- 0.11/min. Concomitantly, epinephrine and norepinephrine levels increased. After 8.2 +/- 2.3 min of LBNP, the MAP had decreased to 41 +/- 7 mmHg and HR had decreased to 57 +/- 3 beats/min. Vasopressin increased from 1.2 +/- 0.3 to 137 +/- 45 pg/ml and renin activity increased from 1.45 +/- 4.0 to 3.80 +/- 1.0 ng.ml-1.h-1 with no further changes in epinephrine, norepinephrine, and vasoactive intestinal polypeptide. A tardy rise in pancreatic polypeptide indicated increased vagal activity. After atropine. LBNP also caused an initial increase in HR, which, however, remained elevated during the subsequent decrease in MAP to 45 +/- 6 mmHg occurring after 8.1 +/- 2.4 min.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 70 (3) ◽  
pp. 1401-1405 ◽  
Author(s):  
R. F. Rea ◽  
M. Hamdan ◽  
M. P. Clary ◽  
M. J. Randels ◽  
P. J. Dayton ◽  
...  

We compared changes in muscle sympathetic nerve activity (SNA) during graded lower body negative pressure (LBNP) and 450 ml of hemorrhage in nine healthy volunteers. During LBNP, central venous pressure (CVP) decreased from 6.1 +/- 0.4 to 4.5 +/- 0.5 (LBNP -5 mmHg), 3.4 +/- 0.6 (LBNP -10 mmHg), and 2.3 +/- 0.6 mmHg (LBNP -15 mmHg), and there were progressive increases in SNA at each level of LBNP. The slope relating percent change in SNA to change in CVP during LBNP (mean +/- SE) was 27 +/- 11%/mmHg. Hemorrhage of 450 ml at a mean rate of 71 +/- 5 ml/min decreased CVP from 6.1 +/- 0.5 to 3.7 +/- 0.5 mmHg and increased SNA by 47 +/- 11%. The increase in SNA during hemorrhage was not significantly different from the increase in SNA predicted by the slope relating percent change in SNA to change in CVP during LBNP. These data show that nonhypotensive hemorrhage causes sympathoexcitation and that sympathetic responses to LBNP and nonhypotensive hemorrhage are similar in humans.


2014 ◽  
Vol 117 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Blair D. Johnson ◽  
Noud van Helmond ◽  
Timothy B. Curry ◽  
Camille M. van Buskirk ◽  
Victor A. Convertino ◽  
...  

The purpose of this study was to compare hemodynamic and blood analyte responses to reduced central venous pressure (CVP) and pulse pressure (PP) elicited during graded lower body negative pressure (LBNP) to those observed during graded blood loss (BL) in conscious humans. We hypothesized that the stimulus-response relationships of CVP and PP to hemodynamic responses during LBNP would mimic those observed during BL. We assessed CVP, PP, heart rate, mean arterial pressure (MAP), and other hemodynamic markers in 12 men during LBNP and BL. Blood samples were obtained for analysis of catecholamines, hematocrit, hemoglobin, arginine vasopressin, and blood gases. LBNP consisted of 5-min stages at 0, 15, 30, and 45 mmHg of suction. BL consisted of 5 min at baseline and following three stages of 333 ml of hemorrhage (1,000 ml total). Individual r2 values and linear regression slopes were calculated to determine whether the stimulus (CVP and PP)-hemodynamic response trajectories were similar between protocols. The CVP-MAP trajectory was the only CVP-response slope that was statistically different during LBNP compared with BL (0.93 ± 0.27 vs. 0.13 ± 0.26; P = 0.037). The PP-heart rate trajectory was the only PP-response slope that was statistically different during LBNP compared with BL (−1.85 ± 0.45 vs. −0.46 ± 0.27; P = 0.024). Norepinephrine, hematocrit, and hemoglobin were all lower at termination in the BL protocol compared with LBNP ( P < 0.05). Consistent with our hypothesis, LBNP mimics the hemodynamic stimulus-response trajectories observed during BL across a significant range of CVP in humans.


1979 ◽  
Vol 236 (1) ◽  
pp. H42-H47 ◽  
Author(s):  
A. Takeshita ◽  
A. L. Mark ◽  
D. L. Eckberg ◽  
F. M. Abboud

There is considerable evidence that the level of afferent cardiopulmonary receptor activity modulates sinus node responses to arterial baroreflex stimulation in experimental animals. We tested the hypothesis that this reflex interaction occurs also in man by measuring sinus node responses to arterial baroreceptor stimulation with phenylephrine injection or neck suction, before and during changes of central venous pressure provoked by lower body negative pressure or leg and lower trunk elevation. Variations of central venous pressure between 1.1 and 9.0 mmHg did not influence arterial baroreflex mediated bradycardia. Baroreflex sinus node responses were augmented by intravenous propranolol, but the level of responses after propranolol was comparable during the control state, lower body negative pressure, and leg and trunk elevation. Sinus node responses to very brief baroreceptor stimuli applied during the transitions of central venous pressure also were comparable in the three states. We conclude that physiological variations of central venous pressure do not influence sinus node responses to arterial baroreceptor stimulation in man.


2015 ◽  
Vol 119 (6) ◽  
pp. 677-685 ◽  
Author(s):  
Caroline A. Rickards ◽  
Blair D. Johnson ◽  
Ronée E. Harvey ◽  
Victor A. Convertino ◽  
Michael J. Joyner ◽  
...  

Lower body negative pressure (LBNP) is often used to simulate blood loss in humans. It is unknown if cerebral blood flow responses to actual blood loss are analogous to simulated blood loss during LBNP. Nine healthy men were studied at baseline, during three levels of LBNP (5 min at −15, −30, and −45 mmHg), and during three levels of blood loss (333, 667, and 1,000 ml). LBNP and blood loss conditions were randomized. Intra-arterial mean arterial pressure (MAP) during LBNP was similar to that during blood loss ( P ≥ 0.42). Central venous pressure (2.8 ± 0.7 vs. 4.0 ± 0.8, 1.2 ± 0.6 vs. 3.5 ± 0.8, and 0.2 ± 0.9 vs. 2.1 ± 0.9 mmHg for levels 1, 2, and 3, respectively, P ≤ 0.003) and stroke volume (71 ± 4 vs. 80 ± 3, 60 ± 3 vs. 74 ± 3, and 51 ± 2 vs. 68 ± 4 ml for levels 1, 2, and 3, respectively, P ≤ 0.002) were lower during LBNP than blood loss. Despite differences in central venous pressure, middle cerebral artery velocity (MCAv) and cerebrovascular conductance were similar between LBNP and blood loss at each level (MCAv at level 3: 62 ± 6 vs. 66 ± 5 cm/s, P = 0.37; cerebrovascular conductance at level 3: 0.72 ± 0.05 vs. 0.73 ± 0.05 cm·s−1·mmHg−1, P = 0.53). While the slope of the MAP-MCAv relationship was slightly different between LBNP and blood loss (0.41 ± 0.03 and 0.66 ± 0.04 cm·s−1·mmHg−1, respectively, P = 0.05), time domain gain between MAP and MCAv at maximal LBNP/blood loss ( P = 0.23) and low-frequency MAP-mean MCAv transfer function coherence, gain, and phase were similar ( P ≥ 0.10). Our results suggest that cerebral hemodynamic responses to LBNP to −45 mmHg and blood loss up to 1,000 ml follow a similar trajectory, and the arterial pressure-cerebral blood velocity relationship is not altered from baseline under these conditions.


2012 ◽  
Vol 113 (10) ◽  
pp. 1604-1612 ◽  
Author(s):  
H. Edgell ◽  
A. Grinberg ◽  
N. Gagné ◽  
K. R. Beavers ◽  
R. L. Hughson

Cardiovascular deconditioning after a 4-h head-down bed rest (HDBR) might be a consequence of the time of day relative to pre-HDBR testing, or simply 4 h of confinement and inactivity rather than the posture change. Ten men and 11 women were studied during lower body negative pressure (LBNP) before and after 4-h HDBR and 4-h seated posture (SEAT) as a control for time of day and physical inactivity effects to test the hypotheses that cardiovascular deconditioning was a consequence of the HDBR posture, and that women would have a greater deconditioning response. Following HDBR, men and women had lower blood volume, higher heart rate with a greater increase during LBNP, a greater decrease of stroke volume during LBNP, lower central venous pressure, smaller inferior vena cava diameter, higher portal vein resistance index with a greater increase during LBNP, but lower forearm vascular resistance, lower norepinephrine, and lower renin. Women had lower vasopressin and men had higher vasopressin after HDBR, and women had lower pelvic impedance and men higher pelvic impedance. Following SEAT, brachial vascular resistance was reduced, thoracic impedance was elevated, the reduction of central venous pressure during LBNP was changed, women had higher angiotensin II whereas men had lower levels, and pelvic impedance increased in women and decreased in men. Cardiovascular deconditioning was greater after 4-h HDBR than after SEAT. Women and men had similar responses for most cardiovascular variables in the present study that tested the responses to LBNP after short-duration HDBR compared with a control condition.


1987 ◽  
Vol 252 (1) ◽  
pp. H85-H88 ◽  
Author(s):  
S. R. Goldsmith ◽  
D. Dodge ◽  
A. W. Cowley

To study the influence of cardiopulmonary baroreceptor loading and unloading on the osmotic stimulation of arginine vasopressin (AVP) in normal humans, we gave 105-min 5% saline infusions (0.06 ml X kg-1 X min-1) to three groups of subjects under different cardiopulmonary baroreceptor loading conditions. Group A received only the infusion, with a consequent increase in central venous pressure (CVP) of 2.6 +/- 1.7 mmHg; group B had CVP held constant by continuous lower body negative pressure; and group C had CVP decreased by -3.3 +/- 1.4 mmHg, also with lower body negative pressure, for the duration of the infusion. Mean arterial pressure increased in group A by 6.6 +/- 3.7 mmHg, but did not change in groups B and C. On average, osmolality increased by the same amount in each of the three groups (11.6 +/- 3.3, 13.7 +/- 3.2, and 10.9 +/- 2.5 mosmol/kg, P = NS). The changes in AVP in the three groups were 3.6 +/- 2.0, 2.7 +/- 1.9, and 6.2 +/- 3.5 pg/ml, P less than 0.03, with group C different from group B and groups A and B not different by individual pairs testing. An independent effect of prolonged CVP reduction on AVP levels in group C was made unlikely by studies in four additional subjects in whom AVP did not change at constant osmolality during 105 min of CVP reduction comparable with that in group C. Thus modest loading of both cardiopulmonary and sinoaortic baroreceptors does not alter the osmotic stimulation of AVP in normal humans.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 116 (4) ◽  
pp. 406-415 ◽  
Author(s):  
Carmen Hinojosa-Laborde ◽  
Robert E. Shade ◽  
Gary W. Muniz ◽  
Cassondra Bauer ◽  
Kathleen A. Goei ◽  
...  

Lower body negative pressure (LBNP), a model of hemorrhage (Hem), shifts blood to the legs and elicits central hypovolemia. This study compared responses to LBNP and actual Hem in sedated baboons. Arterial pressure, pulse pressure (PP), central venous pressure (CVP), heart rate, stroke volume (SV), and +dP/d t were measured. Hem steps were 6.25%, 12.5%, 18.75%, and 25% of total estimated blood volume. Shed blood was returned, and 4 wk after Hem, the same animals were subjected to four LBNP levels which elicited equivalent changes in PP and CVP observed during Hem. Blood gases, hematocrit (Hct), hemoglobin (Hb), plasma renin activity (PRA), vasopressin (AVP), epinephrine (EPI), and norepinephrine (NE) were measured at baseline and maximum Hem or LBNP. LBNP levels matched with 6.25%, 12.5%, 18.75%, and 25% hemorrhage were −22 ± 6, −41 ± 7, −54 ± 10, and −71 ± 7 mmHg, respectively (mean ± SD). Hemodynamic responses to Hem and LBNP were similar. SV decreased linearly such that 25% Hem and matching LBNP caused a 50% reduction in SV. Hem caused a decrease in Hct, Hb, and central venous oxygen saturation (ScvO2). In contrast, LBNP increased Hct and Hb, while ScvO2 remained unchanged. Hem caused greater elevations in AVP and NE than LBNP, while PRA, EPI, and other hematologic indexes did not differ between studies. These results indicate that while LBNP does not elicit the same effect on blood cell loss as Hem, LBNP mimics the integrative cardiovascular response to Hem, and validates the use of LBNP as an experimental model of central hypovolemia associated with Hem.


2005 ◽  
Vol 25 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Timothy D Wilson ◽  
J Kevin Shoemaker ◽  
R Kozak ◽  
T-Y Lee ◽  
Adrian W Gelb

Adrenergic nerves innervate the human cerebrovasculature, yet the functional role of neurogenic influences on cerebral hemodynamics remains speculative. In the current study, regional cerebrovascular responses to sympathoexcitatory reflexes were evaluated. In eight volunteers, contrast-enhanced computed tomography was performed at baseline, –40 mmHg lower body negative pressure (LBNP), and a cold pressor test (CPT). Cerebral blood volume (CBV), mean transit time (MTT), and cerebral blood flow (CBF) were evaluated in cortical gray matter (GM), white matter (WM), and basal ganglia/thalamus (BGT) regions. Lower body negative pressure resulted in tachycardia and decreased central venous pressure while mean arterial pressure was maintained. Cold pressor test resulted in increased mean arterial pressure concomitant with tachycardia but no change in central venous pressure. Neither reflex altered end-tidal carbon dioxide. Cerebral blood volume was reduced in GM during both LBNP and CPT ( P<0.05) but was unchanged in WM and BGT. Mean transit time was reduced in WM and GM during CPT ( P<0.05). Cerebral blood flow was only modestly affected with either reflex ( P<0.07). The combined reductions in GM CBV (˜ –25%) and MTT, both with and without any change in central venous pressure, with small CBF changes (˜ –11%), suggest that active venoconstriction contributed to the volume changes. These data demonstrate that CBV is reduced during engagement of sympathoexcitatory reflexes and that these cerebrovascular changes are heterogeneously distributed.


Sign in / Sign up

Export Citation Format

Share Document