response slope
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1663
Author(s):  
Lei Zhang ◽  
Zhengying Wei ◽  
Pengcheng Liu ◽  
Haoran Wei ◽  
Denglong Ma

Carbon-based nanomaterials with carboxylation or chemical modification are widely used as electron-ion exchangers of solid electrodes. For reducing the complexity and dangerousness of the intermediate layer preparation, different original carbon-based nanomaterials are dispersed in deionized water. They are applied in the fabrication of Pb2+-selective electrodes. Because the contact angle of graphene reached 132.5°, the Pb2+-selective electrode of graphene used as an electron-ion exchanger showed excellent performance with a low detection limit of 3.4 × 10−8 M and a fast average response time of 42.6 s. The Nernstian response slope could reach 26.8 mV/decade, and the lifetime lasted for a month. Therefore, graphene suspension without any treatment can be used as the intermediate layer of solid-state electrodes, providing a reference for the preparation of other ion-selective electrodes.


Biostatistics ◽  
2020 ◽  
Author(s):  
Dean A Follmann ◽  
Lori Dodd

Summary Determining the effect of vaccine-induced immune response on disease risk is an important goal of vaccinology. Typically, immune correlates analyses are conducted prospectively with immune response measured shortly after vaccination and subsequent disease status regressed on immune response. In outbreaks and rare disease settings, collecting samples from all vaccinees is not feasible. The test negative design is a retrospective design used to measure vaccine efficacy where symptomatic individuals who present at a clinic are assessed for relevant disease (cases) or some other disease (controls) and vaccination status ascertained. This article proposes that test negative vaccinees have immune response to vaccine assessed both for relevant (e.g., Ebola) and irrelevant (e.g., vector) proteins. If the latter immune response is unaffected by active (Ebola) infection, and is correlated with the relevant immune response, it can serve as a proxy for the immune response of interest proximal to infection. We show that logistic regression using imputed immune response as the covariate and case disease as outcome can estimate the prospective immune response slope and detail the assumptions needed for unbiased inference. The method is evaluated by simulation under various scenarios including constant and decaying immune response. A simulated dataset motivated by ring vaccination for an ongoing Ebola outbreak is analyzed.


2019 ◽  
Vol 92 (1103) ◽  
pp. 20190174 ◽  
Author(s):  
Hannah Mary T Thomas ◽  
Jing Zeng ◽  
Howard J Lee, Jr ◽  
Balu Krishna Sasidharan ◽  
Paul E Kinahan ◽  
...  

Objective: The effect of functional lung avoidance planning on radiation dose-dependent changes in regional lung perfusion is unknown. We characterized dose-perfusion response on longitudinal perfusion single photon emission computed tomography (SPECT)/CT in two cohorts of lung cancer patients treated with and without functional lung avoidance techniques. Methods: The study included 28 primary lung cancer patients: 20 from interventional (NCT02773238) (FLARE-RT) and eight from observational (NCT01982123) (LUNG-RT) clinical trials. FLARE-RT treatment plans included perfused lung dose constraints while LUNG-RT plans adhered to clinical standards. Pre- and 3 month post-treatment macro-aggregated albumin (MAA) SPECT/CT scans were rigidly co-registered to planning four-dimensional CT scans. Tumour-subtracted lung dose was converted to EQD2 and sorted into 5 Gy bins. Mean dose and percent change between pre/post-RT MAA-SPECT uptake (%ΔPERF), normalized to total tumour-subtracted lung uptake, were calculated in each binned dose region. Perfusion frequency histograms of pre/post-RT MAA-SPECT were analyzed. Dose–response data were parameterized by sigmoid logistic functions to estimate maximum perfusion increase (%ΔPERFmaxincrease), maximum perfusion decrease (%ΔPERFmaxdecrease), dose midpoint (Dmid), and dose-response slope (k). Results: Differences in MAA perfusion frequency distribution shape between time points were observed in 11/20 (55%) FLARE-RT and 2/8 (25%) LUNG-RT patients (p < 0.05). FLARE-RT dose response was characterized by >10% perfusion increase in the 0–5 Gy dose bin for 8/20 patients (%ΔPERFmaxincrease = 10–40%), which was not observed in any LUNG-RT patients (p = 0.03). The dose midpoint Dmid at which relative perfusion declined by 50% trended higher in FLARE-RT compared to LUNG-RT cohorts (35 GyEQD2 vs 21 GyEQD2, p = 0.09), while the dose-response slope k was similar between FLARE-RT and LUNG-RT cohorts (3.1–3.2, p = 0.86). Conclusion: Functional lung avoidance planning may promote increased post-treatment perfusion in low dose regions for select patients, though inter-patient variability remains high in unbalanced cohorts. These preliminary findings form testable hypotheses that warrant subsequent validation in larger cohorts within randomized or case-matched control investigations. Advances in knowledge: This novel preliminary study reports differences in dose-response relationships between patients receiving functional lung avoidance radiation therapy (FLARE-RT) and those receiving conventionally planned radiation therapy (LUNG-RT). Following further validation and testing of these effects in larger patient populations, individualized estimation of regional lung perfusion dose-response may help refine future risk-adaptive strategies to minimize lung function deficits and toxicity incidence.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 920 ◽  
Author(s):  
Abd E. Amr ◽  
Mohamed Al-Omar ◽  
Ayman H. Kamel ◽  
Elsayed A. Elsayed

Herein, a facile route leading to good single-walled carbon nanotubes (SWCNT) dispersion or poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) based single-piece nanocomposite membrane is proposed for trace determination of Cu2+ ions. The single-piece solid contact Cu2+-selective electrodes were prepared after drop casting the membrane mixture on the glassy-carbon substrates. The prepared potentiometric sensors revealed a Nernstian response slope of 27.8 ± 0.3 and 28.1 ± 0.4 mV/decade over the linearity range 1.0 × 10−3 to 2.0 × 10−9 and 1.0 × 10−3 to 1.0 × 10−9 M with detection limits of 5.4 × 10−10 and 5.0 × 10−10 M for sensors based on SWCNTs and PEDOT/PSS, respectively. Excellent long-term potential stability and high hydrophobicity of the nanocomposite membrane are recorded for the prepared sensors due to the inherent high capacitance of SWCNT used as a solid contact material. The sensors exhibited high selectivity for Cu2+ ions at pH 4.5 over other common ions. The sensors were applied for Cu2+ assessment in tap water and different tea samples. The proposed sensors were robust, reliable and considered as appealing sensors for copper (II) detection in different complex matrices.


2018 ◽  
Vol 78 (2) ◽  
pp. 432-440 ◽  
Author(s):  
Yifan Zhou ◽  
Luis Alejandro Mur ◽  
Arwyn Edwards ◽  
John Davies ◽  
Jiwan Han ◽  
...  

Abstract Freshwater quality detection is important for pollution control. Three important components of water quality are pH, ammonia and dissolved H2S and there is an urgent need for a high-precision sensor for simultaneous and continuous measurement. In this study, all-solid-state electrodes of Eh, pH, NH4+ and S2− were manufactured and mounted to a wireless chemical sensor with multiple parameters. Calibration indicated that the pH electrode had a Nernst response with slope of 53.174 mV; the NH4+ electrode had a detection limit of 10−5 mol/L (Nernst response slope of 53.56 mV between 10−1 to 10−4 mol/L). Ag/Ag2S has a detection limit of 10−7 mol/L (Nernst response slope of 28.439 mV). The sensor was cylindrical and small with low power consumption and low storage demand to achieve continuous in-situ monitoring for long periods. The sensor was tested for 10 days in streams at Trawsgoed Dairy farm in Aberystwyth, UK. At the intensively farmed Trawsgoed, the concentration of NH4+ in the stream rose sharply after the application of slurry to adjacent fields. Further, the stream was overhung with extensive vegetation and exhibited changes in pH, which correlated with photosynthetic activity. Measurements of S2− were stable throughout the week. Our data demonstrate the applicability of our multiple electrode sensor.


2018 ◽  
Vol 208 ◽  
pp. 04002 ◽  
Author(s):  
Alexander Berdin ◽  
Pavel Kovalenko

The method is proposed for defining the power system load frequency static response based on synchrophasor measurements during transients accompanied by frequency deviations. The method was successfully validated involving four events resulting in frequency deviations in the Northern part of Tyumen region of up to 0.06 Hz magnitude and recorded by means of the System operator WAMS.


Author(s):  
Said M. Sayyah ◽  
Sayed S. Abd-Elrehim ◽  
Rehab E. Azooz ◽  
Fatma Mohamed

<p class="PaperAbstract"><span lang="EN-US">Electrochemical copolymerization of o-chlorophenol (o-ClPh) with o-hydroxyphenol (o-HOPh) was conducted in aqueous H<sub>2</sub>SO<sub>4</sub> using cyclic voltammetry technique at the Pt electrode. The reaction rate was found to be of the second order in the monomer concentration and first order in the acid concentration. The activation energy, enthalpy, and entropy for the copolymerization were found to be 20.20 kJ mol<sup>-1</sup>, 19.24 kJ mol<sup>-1</sup> and -281.47 J K<sup>-1 </sup>mol<sup>-1</sup>, respectively. The obtained copolymer films show smooth feature with amorphous nature. Copolymer films adhere Pt electrode very well and show less reactivity in the H<sub>2</sub>SO<sub>4</sub> medium. The pH sensitivity of the poly(oClPh-co-HOPh)-modified electrode has been investigated potentiometrically using different polymer thicknesses. The potentiometric responses to pH change of the poly(oClPh-co-HOPh)-modified electrode appeared reversible and linear in the range from pH 2-11 with a maximum sub-Nernstian potentiometric response slope of 40.7 mV/pH (30 °C). The slope became close to 56.2 mV/pH in the range from pH 4 to 9 at (30 °C). The poly(oClPh-co-HOPh)-modified electrode readily responded to pH change but was not stable with time. </span></p>


Author(s):  
A. Haywood ◽  
J. Verbesselt ◽  
P. J. Baker

In this study, we characterised the temporal-spectral patterns associated with identifying acute-severity disturbances and low-severity disturbances between 1985 and 2011 with the objective to test whether different disturbance agents within these categories can be identified with annual Landsat time series data. We analysed a representative State forest within the Central Highlands which has been exposed to a range of disturbances over the last 30 years, including timber harvesting (clearfell, selective and thinning) and fire (wildfire and prescribed burning). We fitted spectral time series models to annual normal burn ratio (NBR) and Tasseled Cap Indices (TCI), from which we extracted a range of disturbance and recovery metrics. With these metrics, three hierarchical random forest models were trained to 1) distinguish acute-severity disturbances from low-severity disturbances; 2a) attribute the disturbance agents most likely within the acute-severity class; 2b) and attribute the disturbance agents most likely within the low-severity class. Disturbance types (acute severity and low-severity) were successfully mapped with an overall accuracy of 72.9&thinsp;%, and the individual disturbance types were successfully attributed with overall accuracies ranging from 53.2&thinsp;% to 64.3&thinsp;%. Low-severity disturbance agents were successfully mapped with an overall accuracy of 80.2&thinsp;%, and individual agents were successfully attributed with overall accuracies ranging from 25.5&thinsp;% to 95.1. Acute-severity disturbance agents were successfully mapped with an overall accuracy of 95.4&thinsp;%, and individual agents were successfully attributed with overall accuracies ranging from 94.2&thinsp;% to 95.2&thinsp;%. Spectral metrics describing the disturbance magnitude were more important for distinguishing the disturbance agents than the post-disturbance response slope. Spectral changes associated with planned burning disturbances had generally lower magnitudes than selective harvesting. This study demonstrates the potential of landsat time series mapping for fire and timber harvesting disturbances at the agent level and highlights the need for distinguishing between agents to fully capture their impacts on ecosystem processes.


Sign in / Sign up

Export Citation Format

Share Document