Role of adenosine in hyperemic response of coronary blood flow in microembolization

1986 ◽  
Vol 250 (3) ◽  
pp. H509-H518 ◽  
Author(s):  
M. Hori ◽  
M. Inoue ◽  
M. Kitakaze ◽  
Y. Koretsune ◽  
K. Iwai ◽  
...  

To investigate the pathophysiology of acute embolization of small coronary vessels and the role of adenosine in this abnormality, regional coronary blood flow (CBF), coronary vascular resistance, arteriovenous O2 difference, lactate extraction ratio, and adenosine release were studied in 39 anesthetized open-chest dogs after acute coronary embolization with microspheres of three different diameters (15 +/- 1, 94 +/- 8, and 293 +/- 23 microns). In 16 dogs, the left anterior descending coronary artery was embolized by repetitive injections of 15-microns microspheres, up to 4.4 +/- 0.4 X 10(5)/g myocardium; at this point CBF, determined by the electromagnetic flowmeter at the proximal site of the artery, was reduced toward zero. Up to 37% of total embolization, resting CBF increased to 175 +/- 36% of control; thereafter it decreased almost linearly as the extent of embolization was increased. After embolization, coronary arteriovenous O2 difference was significantly (P less than 0.01) decreased with a marked release of adenosine in the coronary vein. Despite a hyperemic flow response of CBF in the embolized area, myocardial ischemia was not prevented; maximal increase in CBF after 100-microns microsphere embolization (141 +/- 11% of control CBF, n = 6) was significantly (P less than 0.05) less than that in 15-micron microsphere embolization, whereas 300-microns microsphere embolization minimally increased CBF (123 +/- 13%, P greater than 0.1; n = 5). Hyperemic flow remained unchanged for at least 3 h when adenosine was persistently released. Theophylline significantly attenuated this response. These results indicate that in embolization with microspheres less than 300 microns in diameter, hyperemic response of coronary blood flow occurs, probably due to the hyperemia of nonoccluded vessels in the adjacent area of ischemic foci to adenosine released from the ischemic myocardium.

1985 ◽  
Vol 248 (6) ◽  
pp. H812-H817
Author(s):  
D. Saito ◽  
T. Hyodo ◽  
K. Takeda ◽  
Y. Abe ◽  
H. Tani ◽  
...  

Adenosine is a prime candidate for the role of mediator between myocardial metabolic state and coronary blood flow. However, there are few reports concerning the direct effects of exogenously added adenosine on coronary autoregulation. The present investigation in the open-chest dog studied the effects of a threshold dose of intracoronary adenosine infusion on reactive hyperemia following brief coronary occlusions. The infused dose did not increase nonocclusive flow by greater than 10%. Adenosine enhanced total hyperemic flow at all occlusions tested (5, 10, 15, 20, and 30 s). Aminophylline pretreatment reduced reactive hyperemia below the control level even in the presence of an intracoronary infusion of adenosine. Adenosine injected into the left atrium and intracoronarily infused papaverine did not affect hyperemic response to 5- and 15-s coronary occlusions. The results suggest that a minimum dose of exogenously added adenosine enhances myocardial reactive hyperemia, possibly by potentiating the effects of endogenous adenosine released during ischemia.


1988 ◽  
Vol 255 (2) ◽  
pp. H250-H260 ◽  
Author(s):  
M. Hori ◽  
M. Kitakaze ◽  
J. Tamai ◽  
Y. Koretsune ◽  
K. Iwai ◽  
...  

To test the hypothesis that alpha 2-adrenoceptor activity exerts a dual control of coronary blood flow, i.e., vasoconstriction and augmentation of the vasodilatory effect of adenosine, four doses of adenosine were infused into left anterior descending coronary artery before and during alpha 2-adrenoceptor stimulation or attenuation in anesthetized open-chest dogs. During a moderate alpha 2-adrenoceptor attenuation (yohimbine or rauwolscine, ic), which did not alter coronary blood flow (CBF) at the base-line condition, the hyperemic response of CBF to infused adenosine was markedly reduced, whereas during the potent attenuation both base-line CBF and adenosine-induced hyperemic CBF were significantly increased. Inversely, the moderate alpha 2-stimulation (0.03 microgram.kg-1.min-1 norepinephrine with prazosin, ic, or 0.04 microgram.kg-1.min-1 clonidine ic, under propranolol pretreatment) augmented the adenosine-induced coronary vasodilation, but the potent alpha 2-stimulation (0.3 microgram.kg-1.min-1 norepinephrine with prazosin ic, or 0.3 microgram.kg-1.min-1 clonidine ic) reduced both base-line CBF hyperemic CBF. In contrast, alpha 2-adrenoceptor activity did not affect papaverine-induced coronary vasodilation. Moreover, the reactive hyperemic flow after a brief coronary occlusion was reduced significantly during the moderate alpha 2-adrenergic attenuation, but it was augmented during the potent one. These results indicate that the moderate activation of the alpha 2-adrenoceptor augments the hyperemic response of CBF to both exogenous and endogenous adenosine, whereas the potent alpha 2-activation may mask this vasodilatory effect through the coronary vasoconstrictive effect.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1205
Author(s):  
Timur Gamilov ◽  
Philipp Kopylov ◽  
Maria Serova ◽  
Roman Syunyaev ◽  
Andrey Pikunov ◽  
...  

In this work we present a one-dimensional (1D) mathematical model of the coronary circulation and use it to study the effects of arrhythmias on coronary blood flow (CBF). Hydrodynamical models are rarely used to study arrhythmias’ effects on CBF. Our model accounts for action potential duration, which updates the length of systole depending on the heart rate. It also includes dependency of stroke volume on heart rate, which is based on clinical data. We apply the new methodology to the computational evaluation of CBF during interventricular asynchrony due to cardiac pacing and some types of arrhythmias including tachycardia, bradycardia, long QT syndrome and premature ventricular contraction (bigeminy, trigeminy, quadrigeminy). We find that CBF can be significantly affected by arrhythmias. CBF at rest (60 bpm) is 26% lower in LCA and 22% lower in RCA for long QT syndrome. During bigeminy, trigeminy and quadrigeminy, respectively, CBF decreases by 28%, 19% and 14% with respect to a healthy case.


1993 ◽  
Vol 264 (5) ◽  
pp. H1346-H1354 ◽  
Author(s):  
B. R. Ito ◽  
R. L. Engler ◽  
U. del Balzo

Activated complement component C5a causes myocardial ischemia mediated by thromboxane (Tx) A2 and leukotrienes C4/D4. Blood cells are not involved in either the mediator release or the myocardial effects of C5a, suggesting that a C5a-sensitive, cardiac resident inflammatory cell is responsible. The goals of this study were to determine whether 1) cardiac mast cell activation accompanies the C5a response, 2) inhibition of mast cell degranulation inhibits the response, and 3) histamine release plays a role in the C5a-induced myocardial ischemia. The left anterior descending coronary artery (LAD) of open-chest pigs (n = 13) was perfused with arterial blood at constant pressure (95 mmHg). Coronary blood flow (CBF) was measured (in-line flowmeter) and regional function [percent segment shortening (%SS)] determined with sonomicrometry. A coronary vein was cannulated for measurement of plasma TxB2 and histamine (a marker of mast cell degranulation). Intracoronary C5a (500 ng) decreased coronary blood flow (45% of preinfusion levels) and LAD %SS (65% of preinfusion) and was accompanied by increases in coronary venous TxB2 (delta 63.3 ng/ml) and histamine (delta 200 nM). Mast cell inhibition with lodoxamide (2 mg/kg iv, n = 8) attenuated the C5a-induced fall in CBF (14 vs. 53% decrease, P < 0.01) and %SS (10 vs. 38% decrease, P < 0.01) and also reduced the C5a-induced increase in both coronary venous histamine (delta 26 vs. 278 nM, P < 0.05) and TxB2 (delta 0.34 vs. 63.3 ng/ml, P < 0.01). However, histamine H1 (pyrilamine) and H2 (ranitidine) receptor blockade had no effect on the C5a-induced fall in CBF or LAD %SS.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 254 (5) ◽  
pp. H970-H975 ◽  
Author(s):  
W. R. Law ◽  
R. M. Raymond

Myocardial adenosine (ADO) has long been regarded as a regulator of coronary blood flow. In other tissues, such as adipose and skeletal muscle, much attention has focused on the role of ADO as a metabolic regulator of the actions of insulin. In the present study, we determined the effect of ADO infusion on insulin-stimulated myocardial glucose uptake (MGU). Mongrel dogs of either sex were instrumented to obtain arterial-coronary sinus differences for glucose, lactate, and oxygen. These were multiplied by circumflex artery blood flow (Q) to obtain uptake values. Measurements were made before and during hyperinsulinemic (4 U/min)-euglycemic clamp (clamp) with intracoronary infusions of saline, ADO, adenosine deaminase (ADA), or nitroprusside (NP). During clamp, MGU increased from a basal value of 3.0 +/- 0.8 mg/min (mean +/- SE) to 5.53 +/- 0.8 mg/min. Adenosine infusion potentiated this response, raising MGU further to 9.02 +/- 1.1 mg/min while not significantly affecting lactate or oxygen uptakes. Infusion of ADA confirmed the specificity of the response by blocking the metabolic effect of exogenously infused ADO. When NP was infused, Q increased significantly without altering MGU, indicating that the metabolic response to ADO was independent of the changes it caused in Q. A dose-response relationship existed between ADO and insulin-stimulated MGU. The metabolic response to ADO was more sensitive than the vasodilator response. It is concluded that ADO acts as a regulator of insulin in heart. This metabolic regulation occurs independent of changes in coronary blood flow.


1989 ◽  
Vol 257 (1) ◽  
pp. H132-H140 ◽  
Author(s):  
M. Hori ◽  
M. Kitakaze ◽  
J. Tamai ◽  
K. Iwakura ◽  
A. Kitabatake ◽  
...  

To determine whether alpha 2-adrenoceptor stimulation can augment adenosine-induced coronary vasodilation, 34 open-chest dogs were studied. When a small dose of clonidine (up to 0.24 micrograms.kg-1.min-1 ic) was administered under beta-adrenoceptor blockade, coronary blood flow [312 +/- 16 (SE) ml.100 g-1.min-1] maximally induced by intracoronary infusion of adenosine was further increased (P less than 0.05) by 66 +/- 16 ml.100 g-1.min-1, despite no significant changes in coronary perfusion pressure, myocardial oxygen consumption, and coronary venous adenosine concentration. However, when a larger dose of clonidine (0.36–0.60 micrograms.kg-1.min-1) was infused, adenosine-induced flow progressively decreased. This biphasic action of the alpha 2-adrenoceptor activity was also observed when the dose of norepinephrine was increased during alpha 1-adrenoceptor blockade with prazosin. Norepinephrine up to 0.24 micrograms.kg-1.min-1 (ic) further increased adenosine-induced coronary blood flow by 24 +/- 5% (P less than 0.001), whereas hyperemic flow was decreased by a larger dose of norepinephrine. In contrast to the alpha 2-adrenoceptor stimulation, the alpha 1-adrenoceptor stimulation (norepinephrine with yohimbine) progressively decreased coronary blood flow. Furthermore, with a small dose of clonidine, reactive hyperemic flow significantly increased compared with that without clonidine (303 +/- 13 vs. 355 +/- 13 ml.100 g-1.min-1, P less than 0.001), but a larger dose of clonidine adversely reduced reactive flow (254 +/- 18 ml.100 g-1.min-1, P less than 0.001). Adenosine release during reactive hyperemia with and without intracoronary infusions of clonidine were not altered significantly.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (3) ◽  
pp. H1299-H1308 ◽  
Author(s):  
D. W. Stepp ◽  
K. Kroll ◽  
E. O. Feigl

Autoregulation is defined as the intrinsic ability of an organ to maintain constant flow in the face of changing perfusion pressure. The present study evaluated the role of several potential mediators of coronary autoregulation: interstitial adenosine, ATP-sensitive K+ (K+ATP) channels, and myocardial oxygen and carbon dioxide tensions as reflected by coronary venous oxygen and carbon dioxide tensions. The left main coronary artery was cannulated, and blood was perfused at controlled pressures in closed-chest dogs. Interstitial adenosine concentration was estimated from arterial and venous adenosine concentrations with a previously described mathematical model. Autoregulation of coronary blood flow was observed between 100 and 60 mmHg. Glibenclamide, an inhibitor of K+ATP channels, reduced coronary blood flow by 19% at each perfusion pressure, but autoregulation was preserved. After stepwise reductions in coronary pressure to values > or = 70 mmHg, adenosine concentrations did not increase above basal levels. Adenosine concentration was elevated at 60 mmHg, suggesting a role for adenosine at the limit of coronary autoregulation. Adenosine is not required because glibenclamide, an inhibitor of adenosine-mediated vasodilation, did not reduce autoregulation or increase adenosine concentration. Coronary venous oxygen and carbon dioxide tensions were little changed during autoregulation before the inhibition of K+ATP channels and adenosine vasodilation with glibenclamide. However, coronary venous carbon dioxide tension rose progressively with decreasing coronary pressure after glibenclamide. The increase in carbon dioxide indirectly suggests that carbon dioxide-mediated vasodilation compensated for the loss of K+ATP-channel function. In summary, neither K+ATP channels nor adenosine is necessary to maintain coronary flow in the autoregulatory range of coronary arterial pressure from 100 to 60 mmHg.


1996 ◽  
Vol 27 (7) ◽  
pp. 1804-1812 ◽  
Author(s):  
Masafumi Kitakaze ◽  
Koichi Node ◽  
Tetsuo Minamino ◽  
Hiroaki Kosaka ◽  
Yoshiro Shinozaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document