Cardiovascular effects of dobutamine during exercise in dogs

1989 ◽  
Vol 257 (3) ◽  
pp. H954-H960
Author(s):  
G. C. Haidet ◽  
T. I. Musch ◽  
D. B. Friedman ◽  
G. A. Ordway

To test the hypothesis that stimulation of adrenergic receptors in the heart is maximal during maximal exercise, and to determine whether generalized stimulation of adrenergic receptors during strenuous exercise produces significant alterations in the normal regional distribution of blood flow that occurs during exercise, we evaluated the cardiovascular effects of the infusion of dobutamine (40 micrograms.kg-1.min-1) in mongrel dogs during treadmill running. During maximal exercise, the dobutamine infusion resulted in a significant (P less than 0.05) increase in heart rate. Exercise capacity, total body O2 consumption (VO2), and maximal arteriovenous O2 difference, however, each were reduced during the infusion of this drug. A concomitant reduction in maximal blood flow to locomotive skeletal muscle occurred. The infusion of dobutamine also resulted in an increase in heart rate at a strenuous level of submaximal exercise. However, unlike during maximal exercise, VO2 was unchanged. Blood flow to locomotive skeletal muscle increased, and there was a concomitant reduction in arteriovenous O2 difference. Blood flow reductions that normally occur in splanchnic circulations during strenuous and during maximal exercise were generally somewhat attenuated during the infusion of this drug. Thus, dobutamine, a sympathomimetic agent, produces significant cardiovascular effects when infused in high doses during exercise. Our results demonstrate that beta-adrenergic receptor reserve exists in the heart during maximal exercise in dogs. In addition, the peripheral responses that occur during the infusion of the drug provide additional evidence that different degrees of adrenergic receptor reserve normally appear to be present within different regional circulations during strenuous and during maximal exercise.

2006 ◽  
Vol 100 (5) ◽  
pp. 1563-1568 ◽  
Author(s):  
Darren S. DeLorey ◽  
Jason J. Hamann ◽  
Heidi A. Kluess ◽  
Philip S. Clifford ◽  
John B. Buckwalter

Sympathetic nervous system restraint of skeletal muscle blood flow during dynamic exercise has been well documented. However, whether sympathetic restraint of muscle blood flow persists and is constant throughout prolonged exercise has not been established. We hypothesized that both α1- and α2-adrenergic receptors would restrain skeletal muscle blood flow throughout prolonged constant-load exercise and that the restraint would increase as a function of exercise duration. Mongrel dogs were instrumented chronically with transit-time flow probes on the external iliac arteries and an indwelling catheter in a branch of the femoral artery. Flow-adjusted doses of selective α1- (prazosin) and α2-adrenergic receptor (rauwolscine) antagonists were infused after 5, 30, and 50 min of treadmill exercise at 3 and 6 miles/h. During mild-intensity exercise (3 miles/h), prazosin infusion resulted in a greater ( P < 0.05) increase in vascular conductance (VC) after 5 [42% (SD 6)], compared with 30 [28% (SD 6)] and 50 [28% (SD 8)] min of running. In contrast, prazosin resulted in a similar increase in VC after 5 [29% (SD 10)], 30 [24% (SD 9)], and 50 [22% (SD 9)] min of moderate-intensity (6 miles/h) exercise. Rauwolscine infusion resulted in a greater ( P < 0.05) increase in VC after 5 [39% (SD 14)] compared with 30 [26% (SD 9)] and 50 [22% (SD 4)] min of exercise at 3 miles/h. Rauwolscine infusion produced a similar increase in VC after 5 [19% (SD 3)], 30 [15% (SD 6)], and 50 [16% (SD 2)] min of exercise at 6 miles/h. These results suggest that the ability of α1- and α2-adrenergic receptors to produce vasoconstriction and restrain blood flow to active muscles may be influenced by both the intensity and duration of exercise.


1989 ◽  
Vol 67 (10) ◽  
pp. 1199-1204 ◽  
Author(s):  
J. A. Armour

The augmentation of ventricular inotropism induced by electrical stimulation of acutely decentralized efferent sympathetic preganglionic axons was reduced, but still present, following administraiton of hexamethonium (10 mg/kg i.v.). While hexamethonium continued to be administered, the cardiac augmentations so induced were enhanced significantly following administration of the α-adrenergic receptor blocking agent, phentolamine myselate (1 mg/kg i.v.). Stimulation of the sympathetic efferent postganglionic axons in cardiopulmonary nerves induced cardiac augmentations that were unchanged following administration of these agents singly or together. The cardiac augmentations induced by stimulation of efferent preganglionic sympathetic axons were unchanged when phentolamine was administered alone. The augmentations of cardiac inotropism induced by efferent postganglionic sympathetic axonal stimulation were decreased following local administration of the β-adrenergic antagonist timolol into the ipsilateral stellate and middle cervical ganglia. Thereafter, these augmentations were unchanged following the subsequent intravenous administration of phentolamine. It is concluded that the activation of cardiac neurons in the stellate and middle cervical ganglia by stimulation of efferent preganglionic sympathetic axons can be modified by α-adrenergic receptors and that these effects are dependent upon β-adrenergic receptors, not nicotinic ones, in intrathoracic ganglia.Key words: α-adrenergic inotropism, sympathetic ganglia, hexamethonium, phentolamine.


2018 ◽  
Vol 115 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Dino Premilovac ◽  
Emily Attrill ◽  
Stephen Rattigan ◽  
Stephen M Richards ◽  
Jeonga Kim ◽  
...  

Abstract Aims Angiotensin II (AngII) is a potent vasoconstrictor implicated in both hypertension and insulin resistance. Insulin dilates the vasculature in skeletal muscle to increase microvascular blood flow and enhance glucose disposal. In the present study, we investigated whether acute AngII infusion interferes with insulin’s microvascular and metabolic actions in skeletal muscle. Methods and results Adult, male Sprague-Dawley rats received a systemic infusion of either saline, AngII, insulin (hyperinsulinaemic euglycaemic clamp), or insulin (hyperinsulinaemic euglycaemic clamp) plus AngII. A final, separate group of rats received an acute local infusion of AngII into a single hindleg during systemic insulin (hyperinsulinaemic euglycaemic clamp) infusion. In all animals’ systemic metabolic effects, central haemodynamics, femoral artery blood flow, microvascular blood flow, and skeletal muscle glucose uptake (isotopic glucose) were monitored. Systemic AngII infusion increased blood pressure, decreased heart rate, and markedly increased circulating glucose and insulin concentrations. Systemic infusion of AngII during hyperinsulinaemic euglycaemic clamp inhibited insulin-mediated suppression of hepatic glucose output and insulin-stimulated microvascular blood flow in skeletal muscle but did not alter insulin’s effects on the femoral artery or muscle glucose uptake. Local AngII infusion did not alter blood pressure, heart rate, or circulating glucose and insulin. However, local AngII inhibited insulin-stimulated microvascular blood flow, and this was accompanied by reduced skeletal muscle glucose uptake. Conclusions Acute infusion of AngII significantly alters basal haemodynamic and metabolic homeostasis in rats. Both local and systemic AngII infusion attenuated insulin’s microvascular actions in skeletal muscle, but only local AngII infusion led to reduced insulin-stimulated muscle glucose uptake. While increased local, tissue production of AngII may be a factor that couples microvascular insulin resistance and hypertension, additional studies are needed to determine the molecular mechanisms responsible for these vascular defects.


1997 ◽  
Vol 200 (19) ◽  
pp. 2539-2545
Author(s):  
J Herman ◽  
T Wang ◽  
A W Smits ◽  
J W Hicks

As for most ectothermic vertebrates, the breathing pattern of turtles is episodic, and pulmonary blood flow (Qpul) and heart rate (fH) normally increase several-fold during spontaneous ventilation. While some previous studies suggest that these cardiovascular changes are caused by stimulation of pulmonary stretch receptors (PSRs) during ventilation, it has been noted in other studies that blood flows often change prior to the initiation of breathing. Given the uncertainty regarding the role of PSRs in the regulation of central vascular blood flows, we examined the effect of manipulating lung volume (and therefore PSR stimulation) on blood flows and heart rate in the freshwater turtle Trachemys scripta. Turtles were instrumented with blood flow probes on the left aortic arch and the left pulmonary artery for measurements of blood flow, and catheters were inserted into both lungs for manipulation of lung volume. In both anaesthetized and fully recovered animals, reductions or increases in lung volume by withdrawal of lung gas or injection of air, N2, O2 or 10% CO2 (in room air) had no effect on blood flows. Furthermore, simulations of normal breathing bouts by withdrawal and injection of lung gas did not alter Qpul or fH. We conclude that stimulation of PSRs is not sufficient to elicit cardiovascular changes and that the large increase in Qpul and fH normally observed during spontaneous ventilation are probably caused by a simultaneous feedforward control of central origin.


1996 ◽  
Vol 271 (3) ◽  
pp. E556-E562
Author(s):  
Y. Ruan ◽  
H. Kan ◽  
C. Cano ◽  
K. U. Malik

The purpose of the present study was to investigate the contribution of prostaglandins to lipolysis elicited by beta-adrenergic receptor activation in the heart. We have studied the effect of prostaglandin E2 (PGE2), prostaglandin I2 (PGI2), and their precursor arachidonic acid (AA) in the presence and absence of a cyclooxygenase inhibitor, sodium meclofenamate, on glycerol output elicited by stimulation of beta-adrenergic receptors in the isolated rabbit heart with isoproterenol (ISOP). Bolus injections of ISOP (475 pmol) produced a constant increase in glycerol and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) output. Infusion of sodium meclofenamate (16 microM) reduced basal and attenuated ISOP-induced 6-keto-PGF1 alpha output and enhanced glycerol output. During inhibition of endogenous prostaglandin synthesis with meclofenamate, infusion of PGI2 or PGE2 (0.1-1 microM) inhibited ISOP-induced glycerol output. Infusion of AA (0.1-1 microM) increased 6-keto-PGF1 alpha and reduced glycerol output. Infusion of sodium meclofenamate abolished the effect of AA to increase 6-keto-PGF1 alpha and to decrease glycerol output. These data suggest that prostaglandins synthesized in the heart act as an inhibitory modulator of beta-adrenergic receptor-stimulated cardiac lipolysis.


2002 ◽  
Vol 282 (2) ◽  
pp. H508-H515 ◽  
Author(s):  
Masayuki Takamura ◽  
Robert Parent ◽  
Michel Lavallée

We hypothesized that nitric oxide (NO), in addition to β-adrenergic effects, may contribute to exercise-induced coronary responses after α-adrenergic receptor blockade. Data were analyzed as relationships between coronary sinus (CS) O2 saturation (CS O2sat) or coronary blood flow (CBF) and myocardial O2 consumption (MV˙o 2). As MV˙o 2 increased, CS O2sat fell more ( P < 0.05) after N ω-nitro-l-arginine methyl ester (l-NAME; slope = −2.9 ± 0.4 × 10−2 %saturation · μl O2 · min−1 · g−1) than before (slope = −2.1 ± 0.3 × 10−2%saturation · μl O2 · min−1 · g−1). The slope of CBF versus MV˙o 2 was not altered. After blockade of α-adrenergic receptors alone (phentolamine), CS O2sat failed to decrease as MV˙o 2 increased (slope = −0.1 ± 0.5 × 10−2 %saturation · μl O2 · min−1 · g−1).l-NAME given after phentolamine led to substantial decreases in CS O2sat ( P < 0.01) as MV˙o 2 increased (slope = −2.1 ± 0.4 × 10−2 percent saturation · μl O2 −1 · min−1 · g−1). CBF responses to exercise were smaller ( P < 0.01) after phentolamine + l-NAME (slope = 6.1 ± 0.1 × 10−3 ml/μl O2) than after phentolamine alone (slope = 6.9 ± 0.2 × 10−3 ml/μl O2). Thus a significant portion of exercise-induced coronary responses after α-adrenergic receptor blockade involves NO formation.


1989 ◽  
Vol 256 (5) ◽  
pp. E600-E609
Author(s):  
S. B. Liggett ◽  
S. D. Shah ◽  
P. E. Cryer

To test the hypotheses that adrenergic receptor and adenylate cyclase characteristics of easily accessible circulating cells reflect those of relatively inaccessible extravascular catecholamine target tissues in a subtype-specific fashion and that these characteristics predict responses to catecholamines in vivo, we studied 22 normal humans. Adrenergic receptors and their linked adenylate cyclase systems were measured in mononuclear leukocytes (MNL; beta 2), platelets (alpha 2), skeletal muscle membranes (beta 2), and fat cells (B1 and alpha 2) and compared with the responses to stepped, intravenous epinephrine infusions in vivo. MNL beta 2-adrenergic receptor densities (but not antagonist affinities) were correlated (r = 0.627; P less than 0.01) with skeletal muscle beta 2-adrenergic densities. However, other adrenergic receptor characteristics and basal and maximally stimulated adenosine 3',5'-cyclic monophosphate (cAMP) contents of MNL and all adrenergic receptor characteristics and cAMP contents of platelets were unrelated to the corresponding measurements in skeletal muscle and fat. Furthermore, there were no consistent relationships between tissue adrenergic receptor-adenylate cyclase characteristics and the chronotropic, diastolic depressor, lipolytic, ketogenic, glycemic, or glycogenolytic-glycolytic responses to epinephrine in vivo. Thus the data support the hypothesis that adrenergic receptor densities on circulating cells reflect those of extravascular target tissues in a subtype-specific fashion. On the other hand, the data do not support the hypothesis that physiological interindividual variation of adrenergic receptor characteristics is of sufficient magnitude to alter sensitivity to epinephrine in vivo.


1981 ◽  
Vol 240 (1) ◽  
pp. H45-H48 ◽  
Author(s):  
P. L. Toubas ◽  
N. H. Silverman ◽  
M. A. Heymann ◽  
A. M. Rudolph

The effects of acute hemorrhage were studied in two groups each with six fetal lambs (100-116 amd 128-147 days gestation) 3-4 days after we implanted catheters. Fetal blood pressures, heart rate, arterial blood gases and pH, and combined ventricular output and its distribution (radionuclide-labeled microsphere technique) were measured before and 5 min after removal of 15% of fetal-placental blood volume measured by 125I-albumin dilution. Because there were no differences in responses in the two age groups, the data were pooled. Fetal arterial mean pressure fell significantly (50.7 +/- 2.5 to 45.5 +/- 2.6 mmHg) as did heart rate (186 +/- 6 to 151 +/- 13 beats/min) and arterial blood pH (7.39 +/- 0.02 to 7.30 +/- 0.02); arterial blood carbon dioxide tension rose (39.7 +/- 29 to 44.1 +/- 4.4). Combined ventricular output fell from 610 +/- 58 to 448 +/- 45 ml . kg-1 . min-1 (P < 0.05). Blood flow to the umbilical-placental circulation, as well as to the fetal body, fell significantly. Blood flow to the kidneys, gastrointestinal tracts, and lungs also fell, but flow to other organs was maintained. Blood volume reduction in the fetus markedly influences blood gas exchange, because it results in a reduction of umbilical-placental blood flow associated with the fall in arterial pressure.


1997 ◽  
Vol 272 (1) ◽  
pp. R208-R216 ◽  
Author(s):  
Y. H. Yu ◽  
W. W. Blessing

We determined whether alerting stimuli cause cutaneous vasoconstriction in conscious rabbits. We compared ear blood flow with renal, mesenteric, and femoral flows at rest and in response to nonnoxious alerting stimuli, which induced theta-rhythm (4-9 Hz) in the simultaneously recorded hippocampal electroencephalogram (EEG). theta-Inducing stimuli (e.g., whistles and fur touches) reduced ear flow by 95 +/- 6%, commencing 1-2 s after the EEG change and lasting 45 s. Renal flow did not significantly change with alerting stimuli, mesenteric and femoral flows slightly decreased, arterial pressure transiently rose (+10 +/- 3 mmHg), and heart rate fell (+43 +/- 9 beats/min). At rest, the coefficient of variation for ear flow (62 +/- 6%) was greater than for other flows (P < 0.01). Phentolamine (1 mg/kg iv) reduced this coefficient to 29 +/- 4% (P < 0.01). Our study demonstrates that alerting responses in conscious rabbits are associated with selective cutaneous vasoconstriction, without increase in flow to skeletal muscle.


1961 ◽  
Vol 39 (6) ◽  
pp. 1001-1011 ◽  
Author(s):  
W. C. Stewart ◽  
D. H. McKay

Anesthetized rats were given sarin (isopropyl methylphosphonofluoridate) by slow intravenous infusion, while respiration, blood pressure, heart rate, and contractions of the gastrocnemius muscle in response to stimulation of the sciatic nerve were recorded.When artificial ventilation was not carried out, breathing stopped after a toxic dose of sarin had been given, even though the blood pressure was above normal and neuromuscular conduction was not impaired. On the other hand, when artificial ventilation was provided after breathing stopped, the blood pressure and heart rate fell, and death was apparently caused by circulatory insufficiency.Infusion of sarin caused slowing of the heart rate which was not prevented by previous section of the vagus nerves. Injection of atropine restored the heart rate to normal, and enabled the animals to withstand large doses of sarin as long as artificial ventilation was maintained.It was concluded that sarin caused a cholinergic circulatory collapse which was the cause of death in rats maintained with artificial ventilation. This circulatory insufficiency was alleviated by large doses of atropine. Possible causes of the depression of circulation are discussed, and reasons are given for believing it to be due mainly to cholinergic diminution of cardiac output, caused by accumulation of acetylcholine in the heart.


Sign in / Sign up

Export Citation Format

Share Document