Myocardial blood flow and VO2 in lambs with an aortopulmonary shunt during strenuous exercise

1993 ◽  
Vol 264 (3) ◽  
pp. H938-H945
Author(s):  
J. W. Gratama ◽  
J. J. Meuzelaar ◽  
M. Dalinghaus ◽  
J. H. Koers ◽  
A. M. Gerding ◽  
...  

To determine how much myocardial O2 consumption (VO2) would increase during an additional load on the heart in shunt as compared with control lambs, we studied 12 7-wk-old lambs with an aortopulmonary left-to-right shunt (59 +/- 3% of left ventricular output, mean +/- SE) and 11 control lambs during exercise at 80% of their predetermined peak VO2 (VO2peak), at 12 +/- 1 days after surgery. During exercise, systolic aortic pressure increased by 25% in the two groups. Left atrial pressure and left ventricular stroke volume did not change significantly and remained considerably higher in shunt than in control lambs. Heart rate, however, increased less in shunt than in control lambs (163 +/- 8 to 235 +/- 8 vs. 107 +/- 7 to 230 +/- 8 beats/min). The same was true for left ventricular myocardial blood flow (245 +/- 19 to 391 +/- 27 vs. 128 +/- 10 to 320 +/- 45 ml.min-1 x 100 g-1) and myocardial VO2 (847 +/- 101 to 1,692 +/- 136 vs. 528 +/- 58 to 1,579 +/- 178 mumol O2 x min-1 x 100 g-1). We conclude that, despite the volume load, myocardial VO2 of shunt lambs does not increase to a greater extent than in control lambs during a considerable additional load on the heart.

1986 ◽  
Vol 60 (4) ◽  
pp. 1259-1267 ◽  
Author(s):  
E. A. Breisch ◽  
F. C. White ◽  
L. E. Nimmo ◽  
M. D. McKirnan ◽  
C. M. Bloor

The effects of exercise conditioning on the myocardium were studied in seven instrumented pigs strenuously exercised for 12 wk by treadmill running. Data were compared with eight instrumented untrained pigs. O2 consumption measured during maximum exercise effort was significantly elevated in the trained pigs (71.7 +/- 4.0 vs. 56.3 +/- 3.0 ml X ml-1 X kg-1). Absolute right and left ventricular mass increased by 20 and 13%, respectively, in response to exercise. Myocyte cross-sectional area increased by 21% in the trained hearts compared with the untrained hearts. Transmural left ventricular myocardial blood flow (ml X min-1 X g-1) was not significantly different at rest, during maximum exercise, or during exercise with adenosine infusion. However, training caused an elevation of the regional epicardial blood flow noted during exercise and exercise with adenosine. In the trained pigs mean aortic pressure during maximum exercise with adenosine infusion was not significantly different compared with untrained pigs. Coronary resistance during exercise with adenosine infusion was the same in both animal groups. In the trained group capillary numerical (no./mm2) and length (mm/mm3) densities were reduced, whereas arteriolar numerical and length densities were significantly increased compared with the untrained group. Measurements of capillary luminal surface density (mm2/mm3) in the trained group were unchanged compared with the untrained group. These results suggest that strenuous exercise does not stimulate the production of new capillaries, but this is modified by the ability of existing capillaries to increase their luminal surface area to parallel increases in myocyte growth. The arteriolar data suggest that exercise promotes the formation of new arterioles.(ABSTRACT TRUNCATED AT 250 WORDS)


1982 ◽  
Vol 53 (2) ◽  
pp. 380-383 ◽  
Author(s):  
C. Foster ◽  
D. S. Dymond ◽  
J. Carpenter ◽  
D. H. Schmidt

Sudden strenuous exercise (SSE) has been shown to produce ischemic electrocardiographic (ECG) responses, abnormalities of myocardial blood flow, and decreases in left ventricular ejection fraction. Prior exercise taken as warm-up has been shown to ameliorate the ECG and myocardial blood flow abnormalities induced by SSE. The purpose of this study was to determine whether warm-up would normalize the responses of the left ventricular ejection fraction to SSE. Twenty healthy male volunteers performed SSE (400-W bicycle exercise) either with (group A, n = 10) or without (group B, n = 10) warm-up. Ejection fraction was measured using first-pass radionuclide angiography under control conditions and during SSE. During SSE ejection fraction decreased from control values in both group A (70.5 +/- 6.3 to 64.8 +/- 8.2%) and group B (70.3 +/- 10.1 to 57.7 +/- 7.7%), although ejection fraction was significantly higher during SSE in group A. The results are consistent with the hypothesis that the abnormal responses to SSE are attributable to subendocardial ischemia secondary to a delay in autoregulation of myocardial blood flow. However, the decrease in ejection fraction during SSE even following warm-up suggests that the mechanism for the abnormal response to SSE is more complicated than previously hypothesized.


1994 ◽  
Vol 267 (1) ◽  
pp. H133-H138 ◽  
Author(s):  
J. G. Kingma ◽  
J. Martin ◽  
J. R. Rouleau

Instantaneous diastolic left coronary artery pressure-flow relations (PFR) shift during acute tamponade as pressure surrounding the heart increases. Coronary pressure at zero flow (Pf = 0) on the linear portion of the PFR is the weighted mean of the different myocardial waterfall pressures, the distribution of which varies across the left ventricular wall during diastole. However, instantaneous PFR measured in large epicardial coronary arteries cannot be used to estimate Pf = 0 in the different myocardial tissue layers. During coronary vasodilatation in a capacitance-free model, myocardial PFR differs from subendocardium to subepicardium. Therefore, we studied the effects of acute tamponade during maximal pharmacology induced coronary vasodilatation on myocardial PFR in in situ anesthetized dogs. Tamponade reduced cardiac output, aortic pressure, and coronary blood flow. Results demonstrate that different mechanisms influence distribution of myocardial blood flow during tamponade. Subepicardial vascular resistance is unchanged and the extrapolated Pf = 0 is increased, thereby shifting PFR to a higher intercept on the pressure axis. Subendocardial vascular resistance is increased while the extrapolated Pf = 0 remains unchanged. Results indicate that in the setting of acute tamponade with coronary vasodilatation different mechanisms regulate the distribution of myocardial blood flow: in the subepicardium only outflow pressure increases, whereas in the subendocardium only vascular resistance increases.


2000 ◽  
Vol 279 (5) ◽  
pp. H2319-H2325 ◽  
Author(s):  
Yingjie Chen ◽  
Ruisheng Du ◽  
Jay H. Traverse ◽  
Robert J. Bache

Sildenafil, a selective inhibitor of phosphodiesterase type 5, produces relaxation of isolated epicardial coronary artery segments by causing accumulation of cGMP. Because shear-induced nitric oxide-dependent vasodilation is mediated by cGMP, this study was performed to determine whether sildenafil would augment the coronary resistance vessel dilation that occurs during the high-flow states of exercise or reactive hyperemia. In chronically instrumented dogs, sildenafil (2 mg/kg per os) augmented the vasodilator response to acetylcholine, with a leftward shift of the dose-response curve relating coronary flow to acetylcholine dose. Sildenafil caused a 6.7 ± 2.1 mmHg decrease of mean aortic pressure, which was similar at rest and during treadmill exercise ( P < 0.05), with no change of heart rate, left ventricular (LV) systolic pressure, or LV maximal first time derivative of LV pressure. Sildenafil tended to increase myocardial blood flow at rest and during exercise (mean increase = 14 ± 3%; P < 0.05 by ANOVA), but this was associated with a significant decrease in hemoglobin, so that the relationship between myocardial oxygen consumption and oxygen delivery to the myocardium (myocardial blood flow × arterial O2 content) was unchanged. Furthermore, sildenafil did not alter coronary venous Po 2, indicating that the coupling between myocardial blood flow and myocardial oxygen demands was not altered. In addition, sildenafil did not alter the peak coronary flow rate, debt repayment, or duration of reactive hyperemia that followed a 10-s coronary occlusion. The findings suggest that cGMP-mediated resistance vessel dilation contributes little to the increase in myocardial flow that occurs during exercise or reactive hyperemia.


1982 ◽  
Vol 52 (3) ◽  
pp. 664-671 ◽  
Author(s):  
M. V. Cohen ◽  
T. Yipintsoi ◽  
J. Scheuer

To determine the effects of an exercise-training program on coronary collateral development, we instrumented 13 1-yr-old beagles with left circumflex (LCf) coronary artery flow probes and balloon occluders and left atrial and aortic catheters. The LCf artery was constricted resulting in a 58 +/- 4% reduction of the peak reactive hyperemia response following release of a 154-s LCf occlusion. All dogs were studied during the first week of the study protocol. Resting heart rate, cardiac output, and left atrial and aortic pressures were evaluated before and during a 1-min LCf occlusion. Myocardial blood flow was also measured with radioactively-labeled microspheres injected into the left atrium during the LCf occlusion. Subsequently the dogs were exercised at 6.4 km/h and 12% grade, and all hemodynamic and blood flow measurements were repeated. The animals were then randomized to either a sedentary or exercising group. The six sedentary animals were confined to their cages, while the seven training beagles did sprint and endurance running for 75 min/day, 5 days/wk. After 12 wk the hemodynamic and blood flow studies were repeated at rest and during treadmill running. There were no statistically significant differences in resting or exercise hemodynamics, response to LCf occlusion, or myocardial blood flow in the two groups in wk 1. Hemodynamics and blood flow data were virtually unchanged in the sedentary animals after 12 wk. However, the trained dogs demonstrated less evidence of left ventricular failure following LCf occlusion while running and had significantly higher myocardial blood flows. Their resting collateral flow increased from 0.52 +/- 0.16 ml . min-1 . g-1 at wk 1 to 0.90 +/- 0.28 ml . min-1 . g-1 at wk 12 (P less than 0.05), while the ratio of collateral to normal myocardial blood flow increased from 0.46 +/- 0.12 to 0.64 +/- 0.16 (P less than 0.05). Thus chronic exercise can stimulate coronary collateral development, and the enhanced collateral flow has a salutary functional effect.


2001 ◽  
Vol 40 (05) ◽  
pp. 164-171 ◽  
Author(s):  
B. Nowak ◽  
H.-J. Kaiser ◽  
S. Block ◽  
K.-C. Koch ◽  
J. vom Dahl ◽  
...  

Summary Aim: In the present study a new approach has been developed for comparative quantification of absolute myocardial blood flow (MBF), myocardial perfusion, and myocardial metabolism in short-axis slices. Methods: 42 patients with severe CAD, referred for myocardial viability diagnostics, were studied consecutively with 0-15-H2O PET (H2O-PET) (twice), Tc-99m-Tetrofosmin 5PECT (TT-SPECT) and F-18-FDG PET (FDG-PET). All dato sets were reconstructed using attenuation correction and reoriented into short axis slices. Each heart was divided into three representative slices (base, rnidventricular, apex) and 18 ROIs were defined on the FDG PET images and transferred to the corresponding H2O-PET and TT-SPECT slices. TT-SPECT and FDG-PET data were normalized to the ROI showing maximum perfusion. MBF was calculated for all left-ventricular ROIs using a single-compartment-model fitting the dynamic H2O-PET studies. Microsphere equivalent MBF (MBF_micr) was calculated by multiplying MBF and tissue-fraction, a parameter which was obtained by fitting the dynamic H2O-PET studies. To reduce influence of viability only well perfused areas (>70% TT-SPECT) were used for comparative quantification. Results: First and second mean global MBF values were 0.85 ml × min-1 × g-1 and 0.84 ml × min-1 × g1, respectively, with a repeatability coefficient of 0.30 ml ÷ min-1 × gl. After sectorization mean MBF_micr was between 0.58 ml × min1 ÷ ml"1 and 0.68 ml × min-1 × ml"1 in well perfused areas. Corresponding TT-SPECT values ranged from 83 % to 91 %, and FDG-PET values from 91 % to 103%. All procedures yielded higher values for the lateral than the septal regions. Conclusion: Comparative quantification of MBF, MBF_micr, TT-SPECT perfusion and FDG-PET metabolism can be done with the introduced method in short axis slices. The obtained values agree well with experimentally validated values of MBF and MBF_micr.


1962 ◽  
Vol 203 (1) ◽  
pp. 122-124 ◽  
Author(s):  
J. A. Herd ◽  
M. Hollenberg ◽  
G. D. Thorburn ◽  
H. H. Kopald ◽  
A. C. Barger

Serial, rapid measurements of left ventricular myocardial blood flow in trained, unanesthetized dogs have been made by injecting krypton 85 through chronically implanted coronary artery catheters and counting with an external scintillation detector. Precordial radioactivity declined as a single exponential function during the first 2 min after injection, suggesting a single rate of myocardial blood flow. Simultaneous estimations with Kr85 and blood flowmeters in acute experiments established the accuracy and reproducibility of the technique. Myocardial blood flows between 40 and 55 ml/100 g/min were observed repeatedly in three well-trained, unanesthetized dogs in the basal state.


Sign in / Sign up

Export Citation Format

Share Document