Mechanism of the negative inotropic effect of adenosine in guinea pig atrial myocytes

1994 ◽  
Vol 267 (6) ◽  
pp. H2420-H2429
Author(s):  
D. Wang ◽  
L. Belardinelli

The ionic basis of the negative inotropic effect of adenosine on guinea pig atrial myocytes was studied. Membrane potentials and currents were measured using a whole cell patch-clamp technique. The contractility was assessed by video quantitation of cell twitch amplitude. Adenosine shortened action potential duration [measured at 90% repolarization (APD90)] and decreased twitch amplitude in a concentration-dependent manner. The maximal effects of adenosine (100 microM) were to reduce APD90 from 102 +/- 14 to 34 +/- 8 ms (n = 11) and twitch amplitude from 4.3 +/- 0.9 to 1.5 +/- 0.4 microns (n = 8). The concentration of adenosine that caused one-half of the maximal reductions of twitch amplitude and of APD90 was 0.6 microM. Reductions in APD90 and in twitch amplitude were parallel and highly correlated (r = 0.98). Decreases in twitch amplitude by adenosine could be mimicked by application of voltage-clamp pulses with durations similar to the durations of action potentials in the presence of adenosine. Clamp pulse could reverse adenosine-induced but not cadmium chloride-induced decreases in twitch amplitude. Adenosine activated the inwardly rectifying K+ current (IK,Ado), but did not significantly decrease the L-type Ca2+ current (ICa,L). Adenosine reduced the effects of BAY K 8644 on APD90 and twitch amplitude but did not attenuate the BAY K-induced increase in ICa,L. The effects of adenosine on APD90 and twitch amplitude could be reversed after activation of IK,Ado was inhibited by intracellular application of cesium and tetraethylammonium chloride.(ABSTRACT TRUNCATED AT 250 WORDS)

1991 ◽  
Vol 98 (3) ◽  
pp. 517-533 ◽  
Author(s):  
H Ito ◽  
T Sugimoto ◽  
I Kobayashi ◽  
K Takahashi ◽  
T Katada ◽  
...  

Using the patch clamp technique, we examined the agonist-free, basal interaction between the muscarinic acetylcholine (m-ACh) receptor and the G protein (GK)-gated muscarinic K+ channel (IK.ACh), and the modification of this interaction by ACh binding to the receptor in single atrial myocytes of guinea pig heart. In the whole cell clamp mode, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma S) gradually increased the IK.ACh current in the absence of agonists (e.g., acetylcholine). This increase was inhibited in cells that were pretreated with islet-activating protein (IAP, pertussis toxin) or N-ethylmaleimide (NEM). In inside-out patches, even in the absence of agonists, intracellular GTP caused openings of IK.ACh in a concentration-dependent manner in approximately 80% of the patches. Channel activation by GTP in the absence of agonist was much less than that caused by GTP-gamma S. The agonist-independent, GTP-induced activation of IK.ACh was inhibited by the A promoter of IAP (with nicotinamide adenine dinucleotide) or NEM. As the ACh concentration was increased, the GTP-induced maximal open probability of IK.ACh was increased and the GTP concentration for the half-maximal activation of IK.ACh was decreased. Intracellular GDP inhibited the GTP-induced openings of IK.ACh in a concentration-dependent fashion. The half-inhibition of IK.ACh openings occurred at a much lower concentration of GDP in the absence of agonists than in the presence of ACh. From these results, we concluded (a) that the interaction between the m-ACh receptor and GK is essential for basal stimulation of IK.ACh, and (b) that ACh binding to the receptor accelerates the turnover of GK and increases GK's affinity to GTP analogues over GDP.


1996 ◽  
Vol 270 (2) ◽  
pp. H678-H684
Author(s):  
L. Miao ◽  
Z. Qiu ◽  
J. P. Morgan

We tested the hypothesis that the negative inotropic effect (NIE) of cocaine is mediated, at least in part, by cholinergic stimulation and can be correlated with the degree of adenosine 3',5'-cyclic monophosphate (cAMP) dependency of the inotropic state. Cardiac myocytes were isolated from left ventricles of ferrets and loaded with the fluorescent Ca2+ indicator indo 1. Cells were placed in physiological solution containing 2.0 mM Ca2+ and stimulated at 0.5 Hz and 30 degrees C. Cocaine decreased peak cell shortening and peak intracellular Ca2+ in a concentration-dependent manner (10(-8)-10(-4) M). The concentration-response curve of cocaine was shifted significantly downward compared with those of lidocaine and procaine in the same range of concentrations. Atropine (10(-6) M) shifted the concentration-response curve of cocaine, but not those of lidocaine and procaine, rightward, with a pA2 value (7.66) similar to that obtained with carbachol (7.99). With prior addition of isoproterenol (ISO, 10(-8) M) or increased Ca2+ (4.0 mM) to increase cell shortening to the same degree (approximately 60%), cocaine and carbachol decreased contractility to a significantly greater extent in ISO-stimulated myocytes. To clarify whether these treatments changed responsiveness of the contractile elements to Ca2+, the effect of 2,3-butanedione monoxime, an agent that interferes with the interaction of myosin and actin, was tested with previous addition of ISO or increased Ca2+, and no differential effect occurred. Therefore, we postulate that 1) the NIE of cocaine on myocytes is caused by decreased Ca2+ availability; 2) this effect is due to specific stimulation of cholinergic receptors in addition to other direct myocardial (probably local anesthetic) effects; and 3) the NIE correlates with the level of cAMP dependence of the inotropic state.


2008 ◽  
pp. 55-62
Author(s):  
HY Xu ◽  
X Huang ◽  
M Yang ◽  
J-B Sun ◽  
L-H Piao ◽  
...  

C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch-clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [I(K (V))] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1+/-1.6 % (n=7, P<0.05), 78.4+/-2.6 % (n=10, P<0.01) and 67.7+/-2.3 % (n=14, P<0.01), at concentrations of 0.01 micromol/l, 0.1 micromol/l and 1 micromol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 micromol/l LY83583, a guanylate cyclase inhibitor, the 1 ?micromol/l CNP-induced inhibition of I(K (V)) was significantly impaired but when the cells were preincubated with 0.1 micromol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 micromol/l CNP-induced inhibition of I(K (V)) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on I(K (V)). CNP-induced inhibition of I(K (V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibits the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig.


1994 ◽  
Vol 71 (2) ◽  
pp. 561-574 ◽  
Author(s):  
E. P. Christian ◽  
J. Togo ◽  
K. E. Naper

1. Intracellular recordings were made from C-fiber neurons identified by antidromic conduction velocity in intact guinea pig nodose ganglia maintained in vitro, and whole-cell patch clamp recordings were made from dissociated guinea pig nodose neurons to investigate the contribution of various K+ conductances to action-potential repolarization. 2. The repolarizing phase of the intracellularly recorded action potential was prolonged in a concentration-dependent manner by charybdotoxin (Chtx; EC50 = 39 nM) or iberiatoxin (Ibtx; EC50 = 48 nM) in a subpopulation of 16/36 C-fiber neurons. In a subset of these experiments, removal of extracellular Ca2+ reversibly prolonged action-potential duration (APD) in the same 4/9 intracellularly recorded C-fiber neurons affected by Chtx (> or = 100 nM). These convergent results support that a Ca(2+)-activated K+ current (IC) contributes to action-potential repolarization in a restricted subpopulation of C-fiber neurons. 3. Tetraethylammonium (TEA; 1-10 mM) increased APD considerably further in the presence of 100-250 nM Chtx or Ibtx, or in nominally Ca(2+)-free superfusate in 14/14 intracellularly recorded C-fiber neurons. TEA affected APD similarly in subpopulations of neurons with and without IC, suggesting that a voltage-dependent K+ current (IK) contributes significantly to action-potential repolarization in most nodose C-fiber neurons. 4. Substitution of Mn2+ for Ca2+ reduced outward whole-cell currents elicited by voltage command steps positive to -30 mV (2-25 ms) in a subpopulation of 21/36 dissociated nodose neurons, supporting the heterogeneous expression of IC. The kinetics of outward tail current relaxations (tau s of 1.5-2 ms) measured at the return of 2-3 ms depolarizing steps to -40 mV were indistinguishable in neurons with and without IC, precluding a separation of the nodose IC and IK by a difference in deactivation rates. 5. Chtx (10-250 nM) reduced in a subpopulation of 3/8 C-fiber neurons the total outward current elicited by voltage steps depolarized to -30 mV in single microelectrode voltage-clamp recordings. TEA (5-10 mM) further reduced outward current in the presence of 100-250 nM Chtx in all eight experiments. The Chtx-sensitive current was taken to represent IC, and the TEA-sensitive current, the IK component contributing to action-potential repolarization. 6. Rapidly inactivating current (IA) was implicated in action-potential repolarization in a subpopulation of intracellularly recorded C-fiber neurons. In 4/7 neurons, incremented hyperpolarizing prepulses negative to -50 mV progressively shortened APD.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 289 (2) ◽  
pp. C425-C436 ◽  
Author(s):  
Bok Hee Choi ◽  
Jung-Ah Park ◽  
Kyung-Ryoul Kim ◽  
Ggot-Im Lee ◽  
Yong-Tae Lee ◽  
...  

The action of cytochalasins, actin-disrupting agents on human Kv1.5 channel (hKv1.5) stably expressed in Ltk− cells was investigated using the whole cell patch-clamp technique. Cytochalasin B inhibited hKv1.5 currents rapidly and reversibly at +60 mV in a concentration-dependent manner with an IC50 of 4.2 μM. Cytochalasin A, which has a structure very similar to cytochalasin B, inhibited hKv1.5 (IC50 of 1.4 μM at +60 mV). Pretreatment with other actin filament disruptors cytochalasin D and cytochalasin J, and an actin filament stabilizing agent phalloidin had no effect on the cytochalasin B-induced inhibition of hKv1.5 currents. Cytochalasin B accelerated the decay rate of inactivation for the hKv1.5 currents. Cytochalasin B-induced inhibition of the hKv1.5 channels was voltage dependent with a steep increase over the voltage range of the channel's opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. Cytochalasin B produced no significant effect on the steady-state activation or inactivation curves. The rate constants for association and dissociation of cytochalasin B were 3.7 μM/s and 7.5 s−1, respectively. Cytochalasin B produced a use-dependent inhibition of hKv1.5 current that was consistent with the slow recovery from inactivation in the presence of the drug. Cytochalasin B (10 μM) also inhibited an ultrarapid delayed rectifier K+ current ( IK,ur) in human atrial myocytes. These results indicate that cytochalasin B primarily blocks activated hKv1.5 channels and endogenous IK,ur in a cytoskeleton-independent manner as an open-channel blocker.


1997 ◽  
Vol 77 (6) ◽  
pp. 3391-3395 ◽  
Author(s):  
Chaoying Li ◽  
Robert W. Peoples ◽  
Forrest F. Weight

Li, Chaoying, Robert W. Peoples, and Forrest F. Weight. Mg2+ inhibition of ATP-activated current in rat nodose ganglion neurons: evidence that Mg2+ decreases the agonist affinity of the receptor. J. Neurophysiol. 77: 3391–3395, 1997. The effect of Mg2+ on ATP-activated current in rat nodose ganglion neurons was investigated with the use of the whole cell patch-clamp technique. Mg2+ decreased the amplitude of ATP-activated current in a concentration-dependent manner over the concentration range of 0.25–8 mM, with a 50% inhibitory concentration value of 1.5 mM for current activated by 10 μM ATP. Mg2+ shifted the ATP concentration-response curve to the right in a parallel manner, increasing the 50% effective concentration value for ATP from 9.2 μM in the absence of added Mg2+ to 25 μM in the presence of 1 mM Mg2+. Mg2+ increased the deactivation rate of ATP-activated current without changing its activation rate. The observations are consistent with an action of Mg2+ to inhibit ATP-gated ion channel function by decreasing the affinity of the agonist binding site on these receptors.


1991 ◽  
Vol 261 (1) ◽  
pp. C23-C31 ◽  
Author(s):  
Z. Fan ◽  
M. Hiraoka

Effects of Co2+ on the delayed outward K+ current (IK) in guinea pig ventricular myocytes were studied using the whole cell patch-clamp technique. IK was activated by depolarizing voltage pulses positive to -30 mV and reached half-maximal activation at +24 mV. Co2+ shifted the activation curve to a more depolarized voltage range in a concentration-dependent manner, with a Co2+ concentration at which half-maximal response occurs (IC50) of 8 mM and a saturation value of +38 mV. The voltage dependency of IK gatings showed a shift similar to that of activation. In both cases the shift could be explained by screening of surface potential. The density of total negative surface charges sensed by Co2+ was estimated to be 1 e/225 A2. Co2+ also reduced the fully activated IK [IK(full)], and the dose-response curve had a Hill coefficient of 0.5 and an IC50 of 1 mM at 0 mV. Depression of IK(full) was mainly voltage independent. The single-channel unitary current estimated by fluctuation analysis was approximately 0.1 pA at -30 mV either in the absence or presence of Co2+. Therefore, the depression of IK(full) is due to an equivalent reduction in the number of functional channels. It is concluded that Co2+ depressed IK through multiple mechanisms.


1999 ◽  
Vol 10 (3) ◽  
pp. 472-480
Author(s):  
JOCHEN R. HIRSCH ◽  
MARKUS MEYER ◽  
HANS-JURGEN MÄGERT ◽  
WOLF-GEORG FORSSMANN ◽  
STEEN MOLLERUP ◽  
...  

Abstract. In immortalized human kidney epithelial (IHKE-1) cells derived from proximal tubules, two natriuretic peptide receptors (NPR) were identified. In addition to NPR-A, which is bound by atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and urodilatin (URO), a novel form of NPR-B that might be bound by C-type natriuretic peptide (CNP) was identified using PCR. This novel splice variant of NPR-B (NPR-Bi) was also found in human kidney. Whereas ANP, BNP, and URO increased intracellular cGMP levels in IHKE-1 cells in a concentration-dependent manner, CNP had no effect on cGMP levels. To determine the physiologic responses to these agonists in IHKE-1 cells, the membrane voltage (Vm) was monitored using the slow whole-cell patch-clamp technique. ANP (10 nM), BNP (10 nM), and URO (16 nM) depolarized these cells by 3 to 4 mV (n = 47, 7, and 16, respectively), an effect that could be mimicked by 0.1 mM 8-Br-cGMP (n = 15). The effects of ANP and 8-Br-cGMP were not additive (n = 4). CNP (10 nM) also depolarized these cells, by 3 ± 1 mV (n = 28), despite the absence of an increase in cellular cGMP levels, indicating a cGMP-independent mechanism. In the presence of CNP, 8-Br-cGMP further depolarized Vm significantly, by 1.6 ± 0.3 mV (n = 5). The depolarizations by ANP were completely abolished in the presence of Ba2+ (1 mM, n = 4) and thus can be related to inhibition of a K+ conductance in the luminal membrane of IHKE-1 cells. The depolarizations attributable to CNP were completely blocked when genistein (10 μM, n = 6), an inhibitor of tyrosine kinases, was present. These findings indicate that natriuretic peptides regulate electrogenic transport processes via cGMP-dependent and -independent pathways that influence the Vm of IHKE-1 cells.


2001 ◽  
Vol 281 (4) ◽  
pp. L931-L940 ◽  
Author(s):  
X. W. Fu ◽  
D. Wang ◽  
J. Pan ◽  
S. M. Farragher ◽  
V. Wong ◽  
...  

Serotonin (5-HT) type 3 receptor (5-HT3-R) is a ligand-gated ion channel found primarily in the central and peripheral nervous system. We report expression and functional characterization of 5-HT3-R in pulmonary neuroepithelial body (NEB) cells. Using nonisotopic in situ hybridization, we demonstrate expression of 5-HT3-R mRNA in NEB cells in the lungs of different mammals (hamster, rabbit, mouse, and human). Dual immunocytochemistry (for 5-HT and 5-HT3-R) and confocal microscopy localized 5-HT3-R on NEB cell plasma membrane from rabbit. The electrophysiological characteristics of 5-HT3-R in NEB cells were studied in fresh slices of neonatal hamster lung using the whole cell patch-clamp technique. Application of the 5-HT (5–150 μM) and 5-HT3-R agonist 2-methyl-5-HT (5–150 μM) induced inward currents in a concentration-dependent manner. The 5-HT-induced current was blocked (76.5 ± 5.9%) by the specific 5-HT3-R antagonist ICS-205–930 (50 μM), whereas katanserin and p-4-iodo- N-{2-[4-(methoxyphenyl)-1-piperazinyl]ethyl}- N-2-pyridinylbenzamide had minimal effects. Forskolin had no effect on desensitization and amplitude of the 5-HT-induced current. The reduction of Ca2+ and Mg2+ in the extracellular solution enhanced the amplitude of the 5-HT-induced current because of slower desensitization. Our studies suggest that 5-HT3-R in NEB cells may function as an autoreceptor and may potentially be involved in modulation of hypoxia signaling.


2000 ◽  
Vol 93 (6) ◽  
pp. 1500-1508 ◽  
Author(s):  
Anna E. Bartunek ◽  
Philippe R. Housmans

Background Sevoflurane depresses myocardial contractility by decreasing transsarcolemmal Ca2+ influx. In skinned muscle fibers, sevoflurane affects actin-myosin cross-bridge cycling, which might contribute to the negative inotropic effect. It is uncertain to what extent decreases in Ca2+ sensitivity of the contractile proteins play a role in the negative inotropic effect of sevoflurane in intact cardiac muscle tissue. The aim of this study was to assess whether sevoflurane decreases myofibrillar Ca2+ sensitivity in intact living cardiac fibers and to quantify the relative importance of changes in myofibrillar Ca2+ sensitivity versus changes in myoplasmic Ca2+ availability by sevoflurane. Methods The effects of sevoflurane 0-4.05% vol/vol (0-1.5 minimum alveolar concentration [MAC]) on isometric and isotonic variables of contractility and on the intracellular calcium transient were assessed in isolated ferret right ventricular papillary muscles microinjected with the Ca2+-regulated photoprotein aequorin. The intracellular calcium transient was analyzed in the context of a multicompartment model of intracellular Ca2+ buffers in mammalian ventricular myocardium. Results Sevoflurane decreased contractility, time to peak force, time to half isometric relaxation, and the [Ca2+]i transient in a reversible, concentration-dependent manner. Increasing [Ca2+]o in the presence of sevoflurane to produce peak force equal to control increased intracellular Ca2+ transient higher than control. Conclusions Sevoflurane decreases myoplasmic Ca2+ availability and myofibrillar Ca2+ sensitivity in equal proportions except at 4.05% vol/vol (1.5 MAC), where Ca2+ availability is decreased more. These changes are at the basis of the negative inotropic effect of sevoflurane in mammalian ventricular myocardium.


Sign in / Sign up

Export Citation Format

Share Document