scholarly journals Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss

2018 ◽  
Vol 315 (2) ◽  
pp. R397-R407 ◽  
Author(s):  
Till S. Harter ◽  
Alexandra G. May ◽  
William J. Federspiel ◽  
Claudiu T. Supuran ◽  
Colin J. Brauner

Accumulating evidence is highlighting the importance of a system of enhanced hemoglobin-oxygen (Hb-O2) unloading for cardiovascular O2 transport in teleosts. Adrenergically stimulated sodium-proton exchangers (β-NHE) create H+ gradients across the red blood cell (RBC) membrane that are short-circuited in the presence of plasma-accessible carbonic anhydrase (paCA) at the tissues; the result is a large arterial-venous pH shift that greatly enhances O2 unloading from pH-sensitive Hb. However, RBC intracellular pH (pHi) must recover during venous transit (31–90 s) to enable O2 loading at the gills. The halftimes ( t1/2) and magnitudes of RBC β-adrenergic stimulation, short-circuiting with paCA and recovery of RBC pHi, were assessed in vitro, on rainbow trout whole blood, and using changes in closed-system partial pressure of O2 as a sensitive indicator for changes in RBC pHi. In addition, the recovery rate of RBC pHi was assessed in a continuous-flow apparatus that more closely mimics RBC transit through the circulation. Results indicate that: 1) the t1/2 of β-NHE short-circuiting is likely within the residence time of blood in the capillaries, 2) the t1/2 of RBC pHi recovery is 17 s and within the time of RBC venous transit, and 3) after short-circuiting, RBCs reestablish the initial H+ gradient across the membrane and can potentially undergo repeated cycles of short-circuiting and recovery. Thus, teleosts have evolved a system that greatly enhances O2 unloading from pH-sensitive Hb at the tissues, while protecting O2 loading at the gills; the resulting increase in O2 transport per unit of blood flow may enable the tremendous athletic ability of salmonids.

1991 ◽  
Vol 156 (1) ◽  
pp. 233-248 ◽  
Author(s):  
S. THOMAS ◽  
R. KINKEAD ◽  
P. J. WALSH ◽  
C. M. WOOD ◽  
S. F. PERRY

The sensitivity of red blood cell Na+/H+ exchange to exogenous adrenaline was assessed in vitro using blood withdrawn from catheterized rainbow trout (Oncorhynchus mykiss) maintained under normoxic conditions [water PO2, (PwO2)=20.66 kPa] or after exposure to moderate hypoxia (PwO2=6.67-9.33 kPa) for 48 h, which chronically elevated plasma adrenaline, but not noradrenaline, levels. Peak changes in whole-blood extracellular pH over a 30 min period after adding 50–1000 nmoll−1 adrenaline were employed as an index of sensitivity; the blood was pre-equilibrated to simulate arterial blood gas tensions in severely hypoxic fish (PaO2=2.0 kPa, PaCO2=0.31 kPa). Blood pooled from normoxic fish displayed a dose-dependent reduction in whole-blood pH after addition of adrenaline. Blood pooled from three separate groups of hypoxic fish, however, displayed diminished sensitivity to adrenaline, ranging from complete desensitization to a 60%reduction of the response. Subsequent experiments performed on blood from individual (i.e. not pooled) normoxic or hypoxic fish demonstrated an inverse correlation between the intensity of H+ extrusion (induced by exogenous adrenaline addition) and endogenous plasma adrenaline levels at the time of blood withdrawal. However, acute increases in plasma adrenaline levels in vitro did not affect the responsiveness of the red blood cell to subsequent adrenergic stimulation. The intensity of H+ extrusion was inversely related to the PaO2in vivo between 2.67 and 10.66 kPa, and directly related to the logarithm of the endogenous plasma adrenaline level. The results suggest that desensitization of Na+/H+ exchange in chronically hypoxic fish is related to persistent elevation of levels of this catecholamine. This desensitization can be reversed in vitro as a function of time, but only when blood is maintained under sufficiently aerobic conditions.


2001 ◽  
Vol 204 (1) ◽  
pp. 39-45 ◽  
Author(s):  
F.B. Jensen ◽  
T. Wang ◽  
J. Brahm

Unidirectional (36)Cl(−) efflux via the red blood cell anion exchanger was measured under Cl(−) self-exchange conditions (i.e. no net flow of anions) in rainbow trout Oncorhynchus mykiss and red-eared freshwater turtle Trachemys scripta to examine the effects of acute temperature changes and acclimation temperature on this process. We also evaluated the possible adaptation of anion exchange to different temperature regimes by including our previously published data on other animals. An acute temperature increase caused a significant increase in the rate constant (k) for unidirectional Cl(−) efflux in rainbow trout and freshwater turtle. After 3 weeks of temperature acclimation, 5 degrees C-acclimated rainbow trout showed only marginally higher Cl(−) transport rates than 15 degrees C-acclimated trout when compared at the same temperature. Apparent activation energies for red blood cell Cl(−) exchange in trout and turtle were lower than values reported in endothermic animals. The Q(10) for red blood cell anion exchange was 2.0 in trout and 2.3 in turtle, values close to those for CO(2) excretion, suggesting that, in ectothermic animals, the temperature sensitivity of band-3-mediated anion exchange matches the temperature sensitivity of CO(2) transport (where red blood cell Cl(−)/HCO(3)(−) exchange is a rate-limiting step). In endotherms, such as man and chicken, Q(10) values for red blood cell anion exchange are considerably higher but are no obstacle to CO(2) transport, because body temperature is normally kept constant at values at which anion exchange rates are high. When compared at constant temperature, red blood cell Cl(−) permeability shows large differences among species (trout, carp, eel, cod, turtle, alligator, chicken and man). Cl(−) permeabilities are, however, remarkable similar when compared at preferred body temperatures, suggesting an appropriate evolutionary adaptation of red blood cell anion exchange function to the different thermal niches occupied by animals.


1994 ◽  
Vol 72 (2) ◽  
pp. 280-286 ◽  
Author(s):  
B. L. Tufts ◽  
R. C. Drever ◽  
B. Bagatto ◽  
B. A. Cameron

In the bowfin (Amia calva), a decrease in extracellular pH in vitro was associated with an increase in the water content and chloride concentration in the red blood cells that could be inhibited by the anion-exchange blocker, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). After a step increase in CO2 tension, the extracellular total CO2 concentration was also significantly reduced by DIDS. Finally, over most of the experimental pH range, the red blood cell pH observed in the presence of DIDS was significantly elevated compared with that of controls. Taken together, these results indicate that as in most other fishes, chloride–bicarbonate exchange is clearly present and functional in bowfin red blood cells. Moreover, within the physiological pH range, ion movements across the anion exchanger have a marked influence on both the volume and the pH of bowfin red blood cells. In sharp contrast to the rainbow trout (Oncorhynchus mykiss), catecholamines had no effect on the volume, pH, or intracellular sodium concentration of red blood cells in the bowfin. Following osmotic swelling, rainbow trout red blood cells were able to regulate their volume back to control levels within 2 h. In the bowfin, however, there was no regulation of red blood cell volume after osmotic swelling. Thus, in contrast to many other fishes examined to date, it would appear that in the bowfin, the physiological mechanisms involved in the adrenergic response and in the regulatory volume decrease after osmotic swelling may be less active or possibly even absent in the red blood cells.


1994 ◽  
Vol 72 (5) ◽  
pp. 950-953 ◽  
Author(s):  
Dawn H. Sephton ◽  
William R. Driedzic

Whole blood from rainbow trout (Oncorhynchus mykiss) was incubated in vitro with pharmacological levels of isoproterenol. The adrenergic stimulation of glycolysis in erythrocytes (RBCs) was assessed by monitoring the rate of 14C incorporation from [6-14C]-glucose into the acid-soluble RBC fraction. During a 3-h in vitro incubation, incorporation of label into the acid-soluble RBC fraction of isoproterenol-treated whole blood (0.25 ± 0.04 μmol glucose∙mL−1 RBC∙h−1) was higher than into untreated blood (0.08 ± 0.01 μmol glucose∙mL−1 RBC∙h−1). The percentage of cell membrane binding for phosphofructokinase, aldolase, and glyceraldehyde-3-phosphate dehydrogenase ranged from 17 to 35% and was not altered by adrenergic stimulation. Adrenergic stimulation activates glycolysis in rainbow trout RBCs but not through the modulation of enzyme binding.


1996 ◽  
Vol 199 (3) ◽  
pp. 549-562 ◽  
Author(s):  
S Perry ◽  
S Reid ◽  
A Salama

The effects of a 7-day period of daily physical stress (chasing until exhaustion) on the beta-adrenergic response of the rainbow trout (Oncorhynchus mykiss) red blood cell (rbc) were examined in vitro. Physical stress was associated with pronounced increases in the circulating levels of the catecholamine hormones (adrenaline and noradrenaline) measured on days 1, 3 and 7 of the stress regime. After 7 days, the numbers of high-affinity cell surface beta-adrenoceptors were reduced in the physically stressed fish when measured in vitro under conditions of normoxia (20 % reduction) or hypoxia (30 % reduction). Under hypoxic conditions, the binding affinity of the rbc beta-adrenoceptor was significantly higher in the stressed fish. Although the stressed fish had fewer beta-adrenoceptors, rbc adrenergic responsiveness was enhanced after 7 days of physical stress as determined from dose-response curves relating noradrenaline concentration to water and Na+ accumulation (indices of rbc adrenergic Na+/H+ exchange activity). The EC50 values (concentrations yielding half-maximal responses) for noradrenaline were lowered significantly by 1.7- to 3.9-fold in the blood from physically stressed fish. The enhanced adrenergic responsiveness of the rbcs appeared to be unrelated to changes in the initial steps of the beta-adrenergic signal transduction pathway leading to cyclic AMP production because physical stress was without effect on the magnitude or the dose-dependency of rbc cyclic AMP accumulation. To determine whether post-cyclic-AMP events were affected by physical stress, water and Na+ accumulation were measured in rbcs that had been incubated with the permeable cyclic AMP analogue 8-bromo cyclic AMP. The EC50 values for 8-bromo cyclic AMP were lowered by 1.6- to 1.7-fold in the blood from stressed fish. These experiments demonstrate that repeated physical stress significantly enhances the adrenergic responsiveness of the rainbow trout rbc, presumably by modifying the sensitivity of the Na+/H+ exchanger (or the steps immediately preceding exchanger activation) to cyclic AMP. The results are discussed with respect to the interrelationships between chronic and acute stress responses in fish.


1990 ◽  
Vol 154 (1) ◽  
pp. 475-489 ◽  
Author(s):  
P. J. Walsh ◽  
C. M. Wood ◽  
S. Thomas ◽  
S. F. Perry

Red blood cell metabolism was studied in vitro using whole blood obtained by catheter from resting rainbow trout (Oncorhynchus mykiss). Preparations were viable as shown by stable NTP, metabolite and catecholamine levels and acid-base status, all of which remained at in vivo levels over the 2 h incubation period. Enzymes diagnostic of glycolysis, the tricarboxylic acid (TCA) cycle and phosphagen metabolism were all present in significant amounts in red blood cells. In direct comparisons of 14C-labelled substrates at normal resting plasma concentrations, rates of CO2 production were in the order: glucose greater than lactate greater than alanine greater than oleate. Total CO2 production rates from these four oxidative substrates did not equal directly measured O2 consumption rates, indicating that other substrates may also be important in vivo. Oxidative pathway Km values for glucose (8.4 mmol l-1), lactate (3.3 mmol l-1) and alanine (0.8 mmol l-1) were well within the normal physiological ranges of plasma concentrations. Glucose concentration did not affect lactate oxidation rates, but there was some inhibition (27%) of glucose oxidation by high lactate concentrations (20 mmol l-1). The observed Km values and competitive interactions suggest that changes in plasma concentrations associated with environmental stresses can considerably alter the relative rates of oxidation of glucose and lactate in vivo. Considerable pentose-phosphate shunt activity was detected in red cells, as indicated by high activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and high CO2 production rates from (1–14C)-labelled glucose. Even in the presence of normal O2 levels, a significant percentage (28%) of glucose metabolism was directed to lactate production. Taken together, these results demonstrate that rainbow trout whole blood incubated in vitro constitutes a dynamic and viable system for metabolic studies at the pathway level.


Sign in / Sign up

Export Citation Format

Share Document