Novel axonal projection from the caudal end of the ventrolateral medulla to the intermediolateral cell column

2007 ◽  
Vol 292 (2) ◽  
pp. R927-R936 ◽  
Author(s):  
Kamon Iigaya ◽  
Hiroo Kumagai ◽  
Hiroshi Onimaru ◽  
Akira Kawai ◽  
Naoki Oshima ◽  
...  

We used an optical imaging technique to investigate whether axons of neurons in the caudal end of the ventrolateral medulla (CeVLM), as well as axons of neurons in the rostral ventrolateral medulla (RVLM), project to neurons in the intermediolateral cell column (IML) of the spinal cord. Brain stem-spinal cord preparations from neonatal normotensive Wistar-Kyoto and spontaneously hypertensive rats were stained with a voltage-sensitive dye, and responses to electrical stimulation of the IML at the Th2 level were detected as changes in fluorescence intensity with an optical imaging apparatus (MiCAM-01). The results were as follows: 1) depolarizing responses to IML stimulation during low-Ca high-Mg superfusion were detected on the ventral surface of the medulla at the level of the CeVLM, as well as at the level of the RVLM, 2) depolarizing responses were also detected on cross sections at the level of the CeVLM, and they had a latency of 24.0 ± 5.5 (SD) ms, 3) antidromic action potentials in response to IML stimulation were demonstrated in the CeVLM neurons where optical images were detected, and 4) glutamate application to the CeVLM increased the frequency of excitatory postsynaptic potentials (EPSPs) and induced depolarization of the IML neurons. The optical imaging findings suggested a novel axonal and functional projection from neurons in the CeVLM to the IML. The increase in EPSPs of the IML neurons in response to glutamate application suggests that the CeVLM participates in the regulation of sympathetic nerve activity and blood pressure and may correspond to the caudal pressor area.

1990 ◽  
Vol 258 (2) ◽  
pp. R450-R456 ◽  
Author(s):  
J. K. Smith ◽  
K. W. Barron

Gamma-Aminobutyric acid (GABA) and the GABA antagonist bicuculline methiodide were used to investigate the role of GABAergic transmission in the rostral and caudal ventrolateral medulla in 12- to 13-wk-old spontaneously hypertensive (SH) (n = 7) and normotensive, control Wistar-Kyoto (WKY) (n = 7) rats. Animals were anesthetized with urethan (1.25 g/kg sc), paralyzed with gallamine triethiodide (10 mg/kg iv), and artificially ventilated. Femoral arterial and venous catheters were inserted for the measurement of mean arterial pressure (MAP) and heart rate responses and for intravenous infusions. The ventral surface of the brain stem then was exposed. The responsiveness of the rostral ventrolateral medulla to GABA was compared in SH and WKY rats using unilateral microinjections (30 nl) of GABA at 1, 10, and 100 mM concentrations, which produced significantly (P less than 0.05) larger decreases of MAP in SH rats compared with WKY at the 10 and 100 mM concentrations (-37.3 +/- 2.8 mmHg for SH vs. -27.3 +/- 2.7 mmHg for WKY at 100 mM). Tonic GABAergic inhibition was gauged using bilateral microinjections (30 nl) of bicuculline (2 and 4 mM) into the rostral ventrolateral medulla, which caused significantly larger increases in MAP in the WKY group (+84.8 +/- 8.5 mmHg at 4 mM) compared with the SH group (+14.9 +/- 5.8 mmHg at 4 mM). In contrast, the ability to drive sympathetic outflow by microinjection of L-glutamate in the rostral ventrolateral medulla was not significantly different between WKY and SH rats.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 300 (1) ◽  
pp. H214-H222 ◽  
Author(s):  
Melissa M. J. Farnham ◽  
Melissa A. Inglott ◽  
Paul M. Pilowsky

The rostral ventrolateral medulla contains presympathetic neurons that project monosynaptically to sympathetic preganglionic neurons (SPN) in the spinal cord and are essential for the tonic and reflex control of the cardiovascular system. SPN directly innervate the adrenal medulla and, via postganglionic axons, affect the heart, kidneys, and blood vessels to alter sympathetic outflow and hence blood pressure. Over 80% of bulbospinal, catecholaminergic (C1) neurons contain pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA. Activation of PACAP receptors with intrathecal infusion of PACAP-38 causes a robust, prolonged elevation in sympathetic tone. Given that a common feature of most forms of hypertension is elevated sympathetic tone, this study aimed to determine in the spontaneously hypertensive rat (SHR) and the Wistar Kyoto rat (normotensive control) 1) the proportion of C1 neurons containing PACAP mRNA and 2) responsiveness to intrathecal PACAP-38. We further investigated whether intrathecal infusion of the PACAP antagonist, PACAP(6–38), reduces the hypertension in the SHR. The principal findings are that 1) the proportion of PACAP mRNA-containing C1 neurons is not different between normotensive and hypertensive rats, 2) intrathecal PACAP-38 causes a strain-dependent, sustained sympathoexcitation and tachycardia with variable effects on mean arterial pressure in normotensive and hypertensive rats, and 3) PACAP(6–38) effectively attenuated the effects of intrathecal PACAP-38, but had no effect alone, on any baseline variables. This finding indicates that PACAP-38 is not tonically released in the spinal cord of rats. A role for PACAP in hypertension in conscious rats remains to be determined.


1981 ◽  
Vol 61 (s7) ◽  
pp. 219s-221s ◽  
Author(s):  
J. P. Chalmers ◽  
P. R. C. Howe ◽  
Y. Wallmann ◽  
I. Tumuls

1. We have studied the number of phenylethanolamine-N-methyltransferase (PNMT)-containing nerve cells in the medulla and the activity of PNMT in the medulla, spinal cord and hypothalamus of the rat. 2. At 4 weeks of age there was an increase in the number of PNMT cells counted in the medulla of the spontaneously hypertensive rat (SHR; 21%, P < 0.01) and the stroke-prone spontaneously hypertensive rat (SHR-SP; 22%, P < 0.01) compared with the Wistar-Kyoto (WKY) control rat. 3. At 4 months of age there were no significant differences in the number of medullary PNMT cells in two normotensive strains (WKY and Fisher rats), two genetically hypertensive strains (SHR and SHR-SP) and in DOCA-salt hypertensive rats. 4. In four week old rats the activity of PNMT was increased by about 50% in the spinal cord and medulla of the SHR and SHR-SP compared with the WKY rats, and immunotitration experiments suggest that this is due to an increased concentration of enzyme. 5. At 4 months of age there were no increases in PNMT activity of either genetically hypertensive rats or DOCA-salt hypertensive rats.


Hypertension ◽  
2002 ◽  
Vol 40 (4) ◽  
pp. 560-565 ◽  
Author(s):  
Tomokazu Matsuura ◽  
Hiroo Kumagai ◽  
Akira Kawai ◽  
Hiroshi Onimaru ◽  
Masaki Imai ◽  
...  

2006 ◽  
Vol 290 (3) ◽  
pp. H1110-H1119 ◽  
Author(s):  
De-Pei Li ◽  
Hui-Lin Pan

Increased sympathetic outflow contributes to the pathogenesis of hypertension. However, the mechanisms of increased sympathetic drive in hypertension remain unclear. We examined the tonic GABAergic inhibition in control of the excitability of paraventricular (PVN) presympathetic neurons in spontaneously hypertensive rats (SHR) and normotensive controls, including Sprague-Dawley (SD) and Wistar-Kyoto (WKY) rats. Whole cell patch-clamp recordings were performed on retrogradely labeled PVN neurons projecting to the rostral ventrolateral medulla (RVLM) in brain slices. The basal firing rate of PVN neurons was significantly decreased in 13-wk-old SD and WKY rats but increased in 13-wk-old SHR, compared with their respective 6-wk-old controls. The GABAA antagonist bicuculline consistently increased the firing of PVN neurons in normotensive controls. Surprisingly, bicuculline either decreased the firing or had no effect in 59.3% of labeled cells in 13-wk-old SHR. In contrast, the GABAB antagonist CGP-55845 had no effect on the firing of PVN neurons in normotensive controls but significantly increased the firing of 75% of cells studied in 13-wk-old SHR. Furthermore, the evoked GABAA current decreased significantly in labeled PVN neurons of 13-wk-old SHR compared with that in normotensive controls. Both the frequency and amplitude of GABAergic spontaneously inhibitory postsynaptic currents were also reduced in 13-wk-old SHR. This study demonstrates an unexpected functional change in GABAA and GABAB receptors in regulation of the firing activity of PVN-RVLM neurons in SHR. This change in GABAA receptor function and GABAergic inputs to PVN output neurons may contribute to increased sympathetic outflow in hypertension.


Sign in / Sign up

Export Citation Format

Share Document